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ABSTRACT

The effective series resistance of a multi-turn spiral
inductor operating at high frequencies is known to
increase dramatically above its DC value due to
proximity-effect or current crowding, This
phenomenon is difficult to analyze precisely and has
generally required electromagnetic simulation for
quantitative assessment. Current crowding is studied in
this work through approximate analytical modeling and
first order expressions are derived for predicting
resistance as a function of frequency. The results are
validated through electromagnetic simulation and with
measured data taken from a spiral inductor
implemented in a Silicon-on-Sapphire process.

INTRODUCTION

Spiral inductors implemented in Silicon processes suffer
from several power dissipation mechanisms, leading to
poor inductor quality factors [ - 5]. The best quality
factors reported are generally achieved by etching away the
underlying substrate [6], or by using very high resistivity
or insulating bulk material [7]. In such cases, inductor Q’s
of 20 and above have been reported, with the highest
values found in single turn spirals with correspondingly
small inductance values of < 5nH. Unfortunately, for
spirals with higher inductances, multiple tumns are required
and inductor Q often falls far short of the value that would
be predicted from a simple calculation of inductor
reactance divided by DC series resistance. This problem
can be traced to an increase in effective resistance of the
metal traces at high frequencies due to current crowding,
with skin effect having only a marginal effect at low GHz
frequencies [8 - 10].

Although the problem of current crowding is well known,
little information is available in the literature to quantify it
without resorting to numerical simulations [10]. In this
paper we develop a first order analytical model of this
effect and derive approximate formulas for predicting
increases in effective series R with frequency. Our goal is
to provide a framework for understanding the losses
involved, and to develop simple expressions that can be
used to guide explorations of the spiral inductor geometry
design space without the need for repeated simulations or

fabrication and characterization of many spirals. While
some steps in the analysis currently rely on empirical
expressions and others involve simple linearized
approximations to higher order functions, the broad
framework remains faithful to the physics involved and the
predictions made by the model agree well with simulated
and measured results.

MODEL DEVELOPMENT

The basic mechanism behind current crowding is
illustrated in Figure 1. As the B field of adjacent tums in
the inductor penetrates a trace normal to its surface, eddy
currents are produced within the trace that add to the
inductor’s excitation current on the inside trace edge
(nearest the center of the spiral) and subtract from
(although actually in quadrature at low frequency) the
excitation current on the outside edge. This “constricts”
the current, increasing the effective resistance above the
value that would exist for a uniform flow throughout the
trace width.
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Figure 1. Illustration of current crowding.

A detailed analysis of this effect requires a sequence of
steps including developing an expression for the normal B
field, calculating eddy currents produced, computing power
losses from these currents, and developing an effective
resistance which accounts for the overall losses.

Normal B Field Distribution
Arguably, the most difficult analytical step is derivation of

the B-field distribution within the inductor turns. In this
paper, we bypass these difficulties by adopting the
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following empirical expression based on the results of
finite element calculations for multi-turn spirals.

B(n) = B, () (1)

Here, n is the turn number for which the B field is
computed (numbering from n=1 at the outside turn), B(n)
represents the average normal-directed B field within
spiral turn n, N is the total number of turns, B, is the
average field at the inner-most turn (turn &), and M is the
tum number where the field falls to zero and reverses
direction.

Using finite element calculations of B, the following
expression for B, has been found to be reasonably accurate
over a wide range of geometries.
Bo=0.65% I 7))
In this expression, i ,is the permeability of free space, P is
the turn pitch, and /., is the excitation current. Values for
M depend on the degree of spiral fill-in at the center, but a

good estimate for typical multi-turn square or circular
geometries with moderate fill is M~ &

Eddy Current Magnitude and Phase

At low frequencies, the induced E field responsible for the
eddy current production follows Faraday’s law, expressed
in point form for the loop segment shown in Figure 1 as:

IXE» 32 =—juB, 3)

which implies that the resulting eddy currents are actually

in quadrature with the field and hence the excitation

current. Integrating (3) with respect to x and

approximating B as constant across trace » yields

E(x) = —jwB(n) x for—W/2 <x< Wi2 4)

and an eddy cument density at the trace edges with a
magnitude of

|Jeday| = 0 E= 6 wB(n)% (5)

where g is the conductivity of the trace metal. Taking the

ratio of (5) to the excitation current density in the trace of
thickness T’ and combining with (2) then yields

(.
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This expression is maximum at the innermost turn (n = &),
and if set to one for this case, can be used to find the
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frequency w,, at which the current crowding begins to

become significant.
31

Wcrit = W%Rshcﬂ @)
Here, the trace’s sheet resistance Ru.. has been used in
place of -~ to make the expression user friendly to the 1C

designer (and can be adjusted for skin effect if needed).
Field Redistribution at High Frequencies

The expressions derived above assume the B field within
the inductor remains unchanged from the low frequency
distribution assumed in Equation (1). At high frequencies,
where eddy currents begin to become significant, this
assumption must be checked.

For a multi-turn spiral, the field at tum » is the
superposition of fields from all turns. Thus, while eddy
currents flowing in adjacent tumms will produce some
modification to B(n), the field contributions from equal and
opposite eddy currents along the edges of other turns will
largely cancel at turn n, and the net contribution from all
turns will be relatively unchanged from that of uniform
current for frequencies up to a few times Weri. For
frequencies well above w,.; however, the presence of
large eddy currents along the edges of adjacent tumns, and
especially along the edges of turn n itself, can significantly
change the field in turn 7. One result is limiting of the
eddy currents caused by back-EMF. This effect can be
quantified approximately by treating the eddy current loops
shown in Figure 1 as small inductances and finding the
frequency where the reactance associated with the self
inductance of the loop equals the resistance through which
the eddy current flows. This yields the following estimate
for the frequency where the limiting begins and the
relationship between lcasy and lex shifts to in-phase.

Wiim = 18 725 Roheer ®

This is approximately 4 to 6 times (V. given in (7) for
the case of spirals with W = P.

Resistance Increases with Frequency

Previous results can now be combined to approximate the
effective series resistance R,y of the spiral versus frequency.
This can be done by setting 1.’ R,y equal to the power
dissipated. To simplify the analysis, we shall assume that
the frequency of operation is below wym/2 so that /. and
ledsy can be assumed to be in quadrature and the power
dissipation from each can be computed independently.
The power dissipated in the n’th tumn is then:



P,, = ﬂuR,, +ﬂedd_v,,Redd_v. (9)
where R, is the DC resistance of turn 7 and R.is » is the
resistance through which the eddy current fou » flows in
turn n. R, can be found from the sheet resistance Rue. and
the length of the turn /, while L., » and the resistance Ressn
through which it flows can be estimated by modeling the
eddy current as being uniformly concentrated in regions of
width W/4 along the spiral edges. Combining this
approximation with (6) and (7), the following result is
obtained:

Pam BRa[1+ 4 (2

Werit

p=M\2
(56)"] (10)
To find an expression for the total spiral resistance Ry
(10) can be summed over n and the result equated to /.
Ry to give:

N
Rg=Roc+5(z5) 2 R(S2)" ()
where Rpc is the spiral’s series resistance at DC and the
terms within the summation are geometry dependent.
Calculation of this sum for the typical case of a spiral with
the inner third unfilled yields values in the range of 0.2
Rpc which can be used to give the following result for
simple rough estimates of Ry :

Rep=Roc[1+15(75)*]

(12)

COMPARISON WITH MEASURED DATA

S11 data taken from a 9.5 nH inductor using Cascade
Microtech coplanar waveguide probes connected to an
HP8753A network analyzer are shown in Figure 2. The
measurements are from a traditional square spiral with an
outer dimension of 350um, N = 5,75, W = 18um, and P =
2lum, fabricated in an SOS process with metal sheet
resistance Ruce = 0.025 Ohms/square (representing the
effective value after stacking the three available metal
layers). This data was fit to the model used in reference
[11] consisting of a series R and L, with a capacitance C in
parallel, and the value of C found was then removed from
the impedance to extract the spiral’s actual series
inductance and resistance shown in Figure 3 from the
apparent values measured. The virtually constant value of
L vs frequency is used as a check on the fit of the model to
the data throughout the frequency range. Inductor quality
factor (computed as X7/R) is also plotted, and shows the
typical behavior seen in previously reported spirals.
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Figure 3. Measured parameters after fitting to lumped
element model.

Comparison of values in Figure 3 to predictions of the
analytic model show good agreement. Equation (7)
predicts a critical frequency of 640 MHz for this spiral,
while (12) predicts that the resistance will up by 10% at
this frequency and rise at a quadratic rate. Figure 3 shows
a resistance increase of 10% at approximately 700 MHz,
and an increase of 40% at approximately two times this
frequency, verifying both predictions.  Equation (8)
predicts that resistance increase will begin to level out in
the neighborhood of 3 GHz, while the measured results
show that the quadratic increase in resistance has slowed to
linear by 2.9 GHz, the upper frequency range of
measurement.

COMPARISON WITH SIMULATIONS

To validate the analytic model over a range of values for
W, P, N, and Rueq Vvalues, electromagnetic simulations
were run with for the following cases (all have an outer
dimension of 350um):
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*Case I: N=6, W = 18um, P =2lum, and Ruw =

0.028 Ohms/square [9.5 nH]

*Case 2: Same as case 1, but with Re = 0.014
Ohms/square [9.5 nH)

*Case 3: Same as case 1, but with W decreased to 12um
[9.4 nH]

*Case 4: N = 3, W = 38um, P = 42um, and Rsheet =
0.028 Ohms/square [2.6 nH]

*Case 5: Same as case 4, but with Rsheet increased to
0.056 Ohms/square [2.6 nH]

eCase 6: N = 12, W = 8.5um, P=10.5um, and Rsheet =

0.028 Ohms/square [ 35 nH]

For each case, the simulated S11 values were fit to the
lumped element circuit model and the simulated series
resistance versus frequency was found as described earlier.
The results, expressed as resistance at frequency f divided
by resistance at DC, are shown in Figure 4 and the
predictions of critical frequency and limiting frequency
from equations (7) and (8) for each case are shown in
Table 1. The values of critical frequency from Table 1
agree well with the intercept points of the line R/Rdc = 1.1
as predicted by equation (12). In addition, all curves show
the expected square-law behavior of resistance, and
evidence of limiting at high frequency can be seen
(although limiting does not follow predictions precisely).

R/Rdc vs Frequency
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Figure 4. Spiral resistance divided by DC value for 6
different cases (see text).

Table 1. Predicted values of critical frequency and
limiting frequency for 6 cases (see text).

Case 1 2 3 4 5 6
Critical f 710 360 1,600 320 640 1,600
(MHz)

Limiting f | 2,500 | 1,800 | 5,300 | 1,700 | 3,400 | 7,500
(MHz) )
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SUMMARY AND CONCLUSIONS

Spiral inductors fabricated in processes with high
resistivity substrates show significant increases in series
resistance at high frequency. While the general
mechanisms behind the current crowding mechanism
responsible are well known, no simple quantitative
expressions have been available to help in exploring the
inductor design space. Equations (7), (8), and (12),
derived in this work, provide reasonably accurate estimates
for current crowding effects on series resistance of
common multi-turn spirals. These expressions can be used
to explore tradeoffs among spiral inductor parameters, to
compute initial estimates of spiral performance, and to add
first order modeling of current crowding effects to lumped
element models used in circuit-level simulators.
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