
EECE 690/890
Homework #5

Due Tuesday 10/1/98

1. As discussed in class, it is important to keep our cordless phone’s sleep time reasonably
short (e.g. under 1 second) to avoid making the phone response time too slow. Ultimately
this issue will define how fast the synthesizer must settle on each new frequency as it scans
channels, and how fast the data slicer must settle (see last homework assignment).

a) Determine a reasonable spec for the synthesizer and data slicer combined settling time.
For this calculation, assume a sleep cycle period of 1 second. Also assume that the
phone’s total current consumption and total battery capacity are such that it can receive
for a total of 10 hours without using a sleep mode, and that marketing has told us that the
phone must have an advertised standby time (receive time with sleep mode implemented)
of one week.

b) Create a more detailed flow-chart (or pseudo-code description) of the channel scanning
process which is shown in simplified form at the top of the Call Initiation flow chart. As a
minimum, you should show the basic actions the microcontroller must take to scan the
channels, and call out the I/O signals that it must control or monitor during the scan. You
do not need to go to the level of working out the routine for sending individual bits to the
synthesizer, but you should represent communicating with the synthesizer at some level.

HINT: Refer back to the phone block diagram and think about what events must take
place to perform the scan.

2. The data sheet for the PIC17C44 microcontroller states that it contains 33 I/O pins. List
the actual pins on the IC (by pin number) that can be used for I/O. HINT: It may help to
look at the data sheet handout section on “Special Function Registers”.

3. The PIC microcontroller used by your company in the past was a 16C84, which had very
few I/O pins. When interfacing this device to the LCD, the LCD’s “nibble mode” was
used, in which the character to be displayed (an 8-bit ASCII quantity) was sent to the
LCD 4 bits at a time. This allowed both the control lines and the data lines needed in
communicating with the LCD to be implemented through a single 8-bit microcontroller
port (PORTB).

The “write_lcd_chr” routine from your company’s old program is shown below, together
with variable and constant definitions that it uses. Execute this code on paper, and

determine what bit pattern exists on PORTB each time routine “clock_lcd” is called to
latch the data into the LCD. Assume that the character in the W register is an upper-case
‘K’ (ASCII code 4bh) at the start of the routine.

You should show two 8-bit results (e.g. 10101010), one for each time that clock_lcd is
called. Show your results with the MSB on the left.

You must also show your work! E.g. tabulate the values of variable temp_write_lcd_chr,
register W, and port B at the end of each instruction’s execution to show how you arrived
at your final results.

; variables
temp_write_lcd_chr equ 20h

; constants
LCD_RS equ 5

write_lcd_chr movwf temp_write_lcd_chr
swapf temp_write_lcd_chr, W
andlw 0fh
movwf PORTB
bsf PORTB, LCD_RS
call clock_lcd

movf temp_write_lcd_chr, W
andlw 0fh
movwf PORTB
bsf PORTB, LCD_RS
call clock_lcd

return

