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GEMF_Tool: Simulation Software Tool for Spreading Processes in 
Multilayer Networks 

Introduction 
This software tool implements the generalized formulation of the epidemic spreading problem and the 

related modeling solution proposed by Sahneh et al. in [1]. It considers a spreading process among N nodes 

which can be in M different compartments, and where nodes interact through links of multiple types, 

forming a multi-layer network. 

The modeling starts with a simple node level description of the underlying stochastic process, where nodes 

can transition through different states following specific transition rules. The model provides exact equations 

of the Markov process, which describe the time evolution of the state occupancy probabilities, and a mean-

field type approximation for the same occupancy probabilities [1]. 

GEMF has a simple structure, being characterized by the Laplacian of the transition rate graphs and the 

elements of the adjacency matrices of the network layers. This simple and general structure, explained in 

page 5, provides a direct path for a systematic procedure to simulate all network-based epidemic models 

which fall into the above general description. 

In the next sections, we first describe 1) the theoretical foundation of GEMF_Tool, 2) several examples of 

epidemic models that can be simulated, and 3) the difference between stochastic and mean-field solutions. 

Second, we list the software modules and the functions that constitute GEMF_Tool, and how to input 

networks and model’s parameters and how to collect output results. Finally, we show how to use GEMF_Tool 

for the examples of epidemic models described in the first section. 

GEMF_Tool has been designed and written by Faryad Darabi Sahneh at Kansas State University. Distribution 

and use in source and binary forms, with or without modification, are permitted. 
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What are the theoretical foundations of this software? 
GEMF_Tool is based on the mathematical description in [1]. In the following, we shortly summarize the main 

characteristics of those foundations. First, we explain how a generic network topology is considered in the 

spreading process. Then, we describe the exact Markov process and the mean-field approximation, both 

approaches providing spatio-temporal evolutions of an epidemic. 

Epidemics on Networks 
Consider a network of N nodes where the contact is determined by the adjacency matrix A. Node j is a 

neighbor of i, if it can transmit the infection to node i through link (i, j). If j is a neighbor of i, then aij = 1; 

otherwise, aij = 0. We assume that the collective system is a Markov process. In the simplest epidemic model 

— the susceptible-infected-susceptible (SIS) model — the state xi (t) of a node i at time t is a Bernoulli 

random variable, where xi (t) = 0 if node i is susceptible and xi (t) = 1 if it is infected. The expected value of 

xi(t) is the infection probability of node i. The recovery process for infected agent i has an exponential time 

distribution with average duration 1/, where   R+ is called the recovery rate. Similarly, the infection 

process for susceptible node i in contact with infected node j  i has an exponential time distribution with 

average duration 1/, where   R+ is called the infection rate. Therefore, a susceptible node effectively 

becomes infected at rate  Yi (t), where Yi (t) is the number of infected neighbors of agent i at time t,  

1
( ) ( )

N

i ij jj
Y t a x t




 

Based on this simple transition mechanism, Figure 1 shows how the state of a generic node is governed by a 

simple transition graph. The neighbor’s state that causes transitions from susceptible to infected states is the 

infected state I; we call this the inducer state. The transition from S to I is given by a triad that includes the 

inducer state I, the infection rate , and the network topology identifying neighbors, the contact network N. 

The variable N is used here to identify both the contact network and the number of its nodes.  Overall, the 

transition is governed by (I, , N). This type of transition is called edge-based transition. The transition from 

infected state to susceptible is only governed by the recovery rate , and does not depend on the node’s 

neighbors, nor is provoked by an inducer compartment. This type of transition is called nodal transition. 

 

Figure 1. Schematic of the network-based SIS model 

It is clear as this model do not assume any network model, nor it aggregates characteristics of the network. 

The network topology is fully considered through its complete adjacency matrix, showing why GEMF is a 

model that allows the simulation of spreading processes on any possible contact network.  
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The SIS model is a good example of how a simple compartmental model at the node level along with a 

network topology can lead to very rich and complex dynamics. Following the structure and underlying 

assumptions of existing epidemic models, we proposed a generalized individual-based spreading model 

where 1) the node model can have multiple compartments, and 2) the network topology can have multiple 

layers. Both generalizations are very important, and provide the theoretical foundations for the tremendous 

flexibility of GEMF_Tool. 

Generalization of Markov Process Approach 
One of the generalizations of GEMF concerns the compartment set, where each node can be in one 

compartment in the set S = {s1, s2,.., sm,.., sM}. For example, in the SIS model for epidemic spread, M = 2 and 

S = {Susceptible, Infected}. Each compartment is labeled with a number from 1 to M. The node state xi (t) of 

node i at time t is xi (t) = em if node i is in compartment m at time t. Here, em is the m-th standard unit vector 

in the RM Euclidean space, i.e., all entries of em are zero except for the m-th entry, which is equal to one. 

Therefore, the expected value of xi (t) is in fact the compartment occupancy probability vector, i.e., 

1[ ]  [Pr[   ],...,  Pr[   ]]  T

i i i ME x x e x e    

The state of a single node is not enough to describe the evolution of the node state. Instead, the joint state of 

all nodes follows a Markov process. Therefore, the network state at time t, denoted by X(t), is the joint state 

of all nodes defined as: 

1 1 2( ) ( ) ( ) ( ) ... ( )N

t i NX t x t x t x t x t       

where  is the Kronecker product. 

The other generalization in GEMF concerns the topology. In the SIS model, the interaction among nodes is 

represented by the contact network. However, the types of interaction can be different in a complex 

network. To provide flexibility, we allow the topology G = (V, E1, E2,…, EL) to be consisting of L layers of 

graphs where V is the set of nodes, and El is the set of edges that represent the interaction between each 

pair of individuals in the l-th layer. These graphs have the same nodes, but the edges can be different. Figure 

2 exemplify a two-layer network, where nodes are repeated for clarity in both layers. 

 

Figure 2. Example of a two layer network. Nodes are the same in both layers, while links are different 

 

With no loss of generality, we assume each layer corresponds to one and only one inducer compartment. 

The node level description of the Markov process can be expressed as follows: 

, ,1
Pr[ ( ) | ( ) , ( )] ( ) ( ),   {1,..., }  ,

L

i n i m mn l mn l il
x t t e x t e X t t t y t o t for i N and m n 


              



5 
 

where , , { ( ) }

1

( ) 1
j ql

N

l i l ij x t e

j

y t a 



  is the number of neighbors of nodes i in Gl that are in the corresponding 

inductor compartment ql, l,mn is the edge-based transition rate from compartment m to compartment n for 

layer l, and mn is the nodal transition from compartment m to n, which does not depend on the neighbors in 

any network layer. 

The Equation above provides a useful node-level description of the Markov process, and it is used in 

GEMF_Tool for Monte Carlo numerical simulations of the spreading process. See [1] for a detailed description 

of the equation derivation. 

Mean-Field Approximation 
Using first order mean-field type approximation, the joint expected values are approximated in terms of 

marginal expected values, and the time evolution of the expected values is described through a set of 

ordinary differential equations with MN states [1]. 

Denoting by ( )iv t  the expected value of 
ix   at time t  , i.e., ( ) [ ( )]i iv t E x t , a new set of differential 

equations is obtain to describe the state evolution of each node specifying our generalized epidemic mean-

field model GEMF: 

, ,

1 1

( ) , {1,..., },
l l

L N
T Ti

i l ij j q i

l j

dv
Q v a v Q v i N

dt
 

 

      

where the generalized transition matrices and  
l

M M M MQ Q 

    are defined as 

   

   

,

,

,  , 

,  .

l
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 

 
 

  

 
 

Matrices and  
l

Q Q   are actually the Laplacian matrices of transition rate graphs. In Figure 3, transition rate 

graphs for the SIS model are shown. 

 

 

We recommend a careful study of paper [1] for a thorough and complete understanding of the above 

derivations. 

What type of processes can I simulate? 
The SIS model gives very good insights into how to properly define the transition possibilities to describe an 

epidemic spreading process. In the SIS model, there are two transitions. The transition from the infected 

state to the susceptible represents the recovery process, and occurs independently of the states of other 

nodes. We call this type of transition as node-based transition. The transition from the susceptible state to 

S  

 

S 

S 

I 

I 

Figure 3. Transition rate graphs of SIS 
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the infected state represents the infection process, and occurs as a function of the number of infected 

neighbors. We call this type of transition as edge-based transition. This transition depends on the network 

topology. When creating an epidemic model, the node transition graph needs to be defined, to systematically 

list (1) states, (2) transitions and (3) network layers 

1. Epidemic states or compartments 
When defining an epidemic model, the first decision is the set of compartments. The SIS has only two 

compartments, namely susceptible and infected; SIR has three compartments, namely susceptible, infected, 

and recovered; the SEIR model has four compartments, namely susceptible, exposed, infected, and 

recovered.  

2. Transitions, type, inducer compartments, and network layers 
The second decision is about how to transition from one compartment to another. To this end, in addition to 

define a transition rate parameter, also the nature of the transition needs to be specified; either node-based 

or edge-based. In the case of an edge-based transition, the inducer compartment and the layer that defines 

the neighbor nodes have to be specified too. 

Examples 
We now give several examples of the above process to define the node transition graph. Keep in mind that 

these node transition graphs only represent the transition mechanism for each node in the network and not 

for the entire population. 

SIS on a single-layer network 
In the Susceptible-Infected-Susceptible (SIS) model, each node can be either susceptible or infected. Hence, 

the number of compartments, denoted by M, in the SIS model is M = 2. A susceptible node can become 

infected if it is surrounded by infected nodes. The infection process of a node with one infected neighbor is a 

Poisson process with transition rate . The infection processes are stochastically independent of each other. 

Therefore, for a susceptible node with more than one infected node in its neighborhood, the transition rate is 

the infection rate  times the number of the infected neighbor nodes. The neighborhood of each node is 

determined by a contact network N. In addition to the infection process, there exists also a recovery process. 

An infected node returns to be susceptible with a curing rate . A table of the main characteristics and a 

schematic for the SIS model are shown in the following Table 1 and Figure 4. 

Table 1. Descriptors of the SIS model 

Susceptible-Infected-Susceptible 

States Transition Type Transition 
parameter 

Inducer Layer 

S (susceptible) 

I (infected)      
(SI)  edge-based  Neighbors in state I Contact Network N 

(IS)  node-based    
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Figure 4. Node transition graph for the SIS model 

SIR on a single-layer network 
In the Susceptible-Infected-Recovered (SIR) model, each node can be either susceptible, infected, or 

recovered and immune. Hence, the number of compartments, denoted by M, in the SIR model is M = 3. A 

susceptible node can become infected if it is surrounded by infected nodes. The infection process of a node 

with one infected neighbor is a Poisson process with transition rate . The infection processes are 

stochastically independent of each other. Therefore, for a susceptible node with more than one infected 

node in its neighborhood, the transition rate is the infection rate  times the number of the infected 

neighbor nodes. The neighborhood of each node is determined by a contact network N. In addition to the 

infection process, there exists also a recovery process. An infected node becomes recovered and immune 

with a recovery rate . A table of the main characteristics and a schematic for the SIR model are shown in the 

following Table 2 and Figure 5 

Table 2. Descriptors of the SIR model 

Susceptible-Infected-Recovered 

States Transition Type Transition 
parameter 

Inducer Layer 

S (susceptible) 

I (infected) 

R (recovered) 

(SI)  edge-based  Neighbors in state I Contact Network N 

(IR)  node-based    

 

 

Figure 5. Node transition graph for the SIR model 

 



8 
 

SEIR on a single-layer network 
In the Susceptible-Exposed-Infected-Recovered (SEIR) model, each node can be either susceptible, exposed, 

infected, or recovered and immune. Hence, the number of compartments, denoted by M, in the SEIR model is 

M = 4. A susceptible node can become exposed if it is surrounded by infected nodes. The infection process of 

a node with one infected neighbor is a Poisson process with transition rate . The infection processes are 

stochastically independent of each other. Therefore, for a susceptible node with more than one infected 

node in its neighborhood, the transition rate is the infection rate  times the number of the infected 

neighbor nodes. The neighborhood of each node is determined by a contact network N. An exposed node is 

not yet infectious, but it will transition to the infected state with rate . Finally, an infected node becomes 

recovered and immune with a recovery rate . A table of the main characteristics and a schematic for the 

SEIR model are shown in the following Table 3 and Figure 6. 

Table 3. Descriptors of the SEIR model 

Susceptible-Exposed-Infected-Recovered 

States Transition Type Transition 
parameter 

Inducer Layer 

S (susceptible) 

E (exposed) 

I (infected) 

R (recovered) 

(SE)  edge-based  Neighbors in state I Contact Network N 

(EI) node-based    

(IR)  node-based    

 

 

 

Figure 6. Node transition graph for the SEIR model 

 

 

SAIS on a single-layer network 
The Susceptible-Alert-Infected-Susceptible (SAIS) model was developed to incorporate individual reactions to 

the spread of the virus. In the SAIS spreading model, each node (individual) can be either susceptible, 

infected, or susceptible-alert. Hence, the number of compartments in the SAIS model is M = 3. The recovery 

process in SAIS is the same as the recovery process in the SIS model, and is characterized by the recovery rate 

. The infection process of a susceptible agent is also similar to that of the SIS model, which is determined by 

infection rate  and contact network N. However, in the SAIS model, a susceptible node can become alert if it 

senses infected agents in its neighborhood. In the SAIS model, the alerting transition rate is  times the 

number of infected agents. An alert node can also become infected by the process similar to the infection 
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process of a susceptible node. However, the infection rate for alert nodes is lower due to the adoption of 

preventive behaviors. The alert infection rate is denoted by a with 0<a <. A table of the main 

characteristics and a schematic for the SAIS model are shown in the following Table 4 and Figure 7. 

Table 4. Descriptors of the SAIS one layer model 

Susceptible-Alert-Infected-Susceptible 

States Transition Type Transition 
parameter 

Inducer Layer 

S (susceptible) 

SA (susceptible-alert) 

I (infected) 

(SI) edge-based  Neighbors in state I Contact Network N 

(SSA) edge-based  Neighbors in state I Contact Network N 

(IS) node-based    

(SAI) edge-based a Neighbors in state I Contact Network N 

 

 

 

Figure 7. Node transition graph for the SAIS one layer model 

 

SAIS on a two-layer network 
The Susceptible-Alert-Infected-Susceptible (SAIS) model on a two layer network was developed to 

incorporate multiple sources of information to react to the spread of the virus. In the SAIS spreading model, 

each node (individual) can be either susceptible, infected, or susceptible-alert. Hence, the number of 

compartments in the SAIS model is M = 3. The recovery process in SAIS is the same as the recovery process in 

the SIS model, and is characterized by the recovery rate . The infection process of a susceptible agent is also 

similar to that of the SIS model, which is determined by infection rate  and contact network NA. However, in 

this version of the SAIS model, a susceptible node can become alert if 1) it senses infected agents in its 

contact neighborhood, or 2) it is notified about the infected neighbors in a notification network NB. The 

alerting transition rate is  times the number of infected agents in the contact network and is  times the 

number of infected agents in the notification network. An alert node can also become infected by the process 

similar to the infection process of a susceptible node. However, the infection rate for alert nodes is lower due 

to the adoption of preventive behaviors. . The alert infection rate is denoted by a with 0<a <.. A table of 

the main characteristics and a schematic for the SAIS-2 model are shown in the following Table 5 and Figure 

8. 
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Table 5. Descriptors of the SAIS two layer model 

Susceptible-Alert-Infected-Susceptible 

States Transition Type Transition 
parameter 

Inducer Layer 

S (susceptible) 

SA (susceptible-alert) 

I (infected) 

(SI) edge-based  Neighbors in state I Contact Network NA 

(SSA) edge-based  Neighbors in state I Contact Network NA 

(SSA) edge-based  Neighbors in state I Contact Network NB 

(IS) node-based    

(SAI) edge-based a Neighbors in state I Contact Network NA 

 

 

 

 

Figure 8. Node transition graph for the SAIS two layer model 

 

 

 

SI1SI2S on a two-layer network 
The SI1SI2S model is an extension of continuous-time SIS spreading of a single virus on a simple graph, to the 

modeling of competitive viruses on a two-layer network. In this model, each node is either susceptible, 1-

infected, or 2-infected, i.e., infected by virus 1 or 2, respectively. While virus 1 spreads through network N1, 

virus 2 spreads through network N2. In this competitive scenario the two viruses are exclusive: a node cannot 

be infected by virus 1 and virus 2 simultaneously. Consistent with SIS propagation on a single layer, the 

infection and recovery processes for virus 1 and 2 have similar characteristics. The curing process for 1-

infected node i is a Poisson process with recovery rate 1 > 0. The infection process for susceptible node i 

effectively occurs at rate 1Yi(t), where Yi(t) is the number of 1-infected neighbors of node i at time t in layer 

N1. Recovery and infection processes for virus 2 are similarly described. A table of the main characteristics 

and a schematic for the SI1SI2S model are shown in the following Table 6 and Figure 9. 
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Table 6. Descriptors of the SI1SI2S two layer model 

Susceptible-Infected 1-Susceptible- Infected 2-Susceptible 

States Transition Type Transition 
parameter 

Inducer Layer 

S (susceptible) 

I1 (infected by virus 1) 

I2 (infected by virus 2) 

(SI1) edge-based 1 Neighbors in state I Contact Network N1 

(SI2) edge-based 2 Neighbors in state I Contact Network N2 

(I1S) node-based 1   

(I2S) node-based 2   
 

 

Figure 9. Node transition graph for the SI1SI2S two layer model 
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Simulator 

How is GEMF_Tool organized? 
GEMF_Tool is a software tool to create and simulate epidemic models on multilayer networks, written in 

MATLAB programming language. Several files constitute GEMF_Tool, the most important of which are listed 

and explained below. 

GEMF_main.m 
This is the main program of GEMF. First, the problem setup is defined: the multilayer network, the parameter 
set and the initial conditions. The number of nodes in the network is denoted by N, the network layers are 
denoted as (Net1, Net2, etc.). The critical information about model characteristics and parameters are in files 
starting with “Para”, such as Para_SIS(delta,beta.  
Second, the stochastic simulation is performed, specifying the length of the simulation and post-processing 
tasks. GEMF_SIM(Para,Net,x0,StopCond). Finally, the set of ordinary differential equations are 
solved by GEMF_ODE(Para,Net,X0,T(end)) and final processing of output data is performed.  

GEMF_SIM.m 
This function simulates one realization of the stochastic Markov process corresponding to the epidemic 

model. The simulation is event-based, and stops either when the number of events or the simulation time 

reach a maximum value. 

GEMF_ODE.m 
This function solves numerically the set of differential equations of GEMF using the the MATLAB library 
function ode45(@GEMF_ODE_SOLVER,[0,T],X0_vec) 

Initial_Cond_Gen.m 
This function sets the initial conditions of the epidemic, in other words the initial state of each node. This 

initial state can be assigned as an input, or stochastically defined from a uniform distribution or another given 

distribution.  

NetGen_Import.m 
Net_Import(File,N) imports a generic network through a text file of the adjacency list of the network, 
and the total number of nodes in the network. 

NetGen_ER.m 
NetGen_ER(N,p) generates an Erdos-Renyi network with N nodes and probability p of creating a link 
among and two nodes. 

NetGen_Geo.m 
NetGen_Geo(N,r)generates a random geometric network with N nodes and connectivity radius r. 
 

Para_Files 
The file starting with Para defines the number of compartments M=2, assigns an index to each 
compartment, defines the number of layers N, the inducer compartment in each layer (q=[inducer in layer 1, 
inducer in layer 2, etc.]), the nodal transition parameters A_d(comp-x,comp-y), the edge-based transition 
parameter A_b(comp-x,comp-y,layer-z) in each layer. 
 



13 
 

Using GEMF_Tool 

What do I need to start? 
To start you only need MATLAB® and our GEMF _Tool. GEMF code is written in MATLAB high level language 

in such a way that minimizes the use of specific MATLAB functions, allowing also an easy translation of the 

code in another programming language. 

How can I implement an epidemic model? 
First step in implementing an epidemic model is to open the file GEMF_main.m and set up the multilayer 
network. First assign the value to the variable N representing the number of nodes in the network. Second, 
assign value to the variables Net1, Net2, etc., one for each network layer. Finally define the combination of 
those layers as your multilayer network Net=NetCmbn({Net1,Net2, etc.}). 
 

For example, suppose you want to consider a two-layer network with 1000 nodes, where the first layer is a 
geometric random network with connectivity radius r, and the second layer is an Erdos-Renyi random 
network with probability of creating a link p. The following code illustrate this example. 
 
% Initial Setup 
N=1000; 

 
%Network 
r=sqrt(2*log(N)/N); 
Net1=NetGen_Geo(N,r); 

 
p=2*log(N)/N; 
Net2=NetGen_ER(N,p); 

 
Net=NetCmbn({Net1,Net2}); 

 
If you want to import your own network with 300 nodes, its adjacency list is in file mynetwork.txt and 
you want to consider only one layer, the example below shows this case. 
 
% Initial Setup 
 N=300; 

  
%Network 

 
File='C:\Users\GEMFuser\Desktop\GEMF\mynetwork.txt'; 
N=300; 
Net1=Net_Import(File,N); 

 
Net=NetCmbn({Net1}); 

 
After setting the multilayer network, model parameters need to be defined. Model parameters are closely 
related to the epidemic model in exam, and can be very different from model to model. In the following, we 
show how to set parameters and initial conditions for the epidemic model discussed in the precious section 
of this tutorial. 
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SIS 
Recalling Table 1 that illustrate parameters and inducer states, for the SIS model on a one-layer network, we 

have: 

Susceptible-Infected-Susceptible 

States Transition Type Transition 
parameter 

Inducer Layer 

S (susceptible) 

I (infected)      
(SI)  edge-based  Neighbors in state I Contact Network N 

(IS)  node-based    

 

This table has the information that allow us to define the file Para_SIS.m 

function Para=Para_SIS(delta,beta) 

 
M=2; q=[2]; L=1; 
A_d=zeros(M); A_d(2,1)=delta; 
A_b=zeros(M,M,L); A_b(1,2,1)=beta; 

 
Para={M,q,L,A_d,A_b}; 

 
end 

 

Here, M=2 represents the number of compartments, index 1 representing compartment susceptible, index 2 

representing compartment infected. The vector q=[2] represents the inducer compartments in each layer. In 

this case we have a single layer, so the vector has a single component and the value is 2 being 2=infected the 

inducer compartment. The number of layers L in this case is 1, equal to the number of components of vector 

q.  

To set the node-based transition parameter delta, we specify that the component of the matrix A_d equal to 

delta is the one in position (initial state->final state) of the transition, in this case (IS), equivalent to (2,1). 

This becomes: A_d(2,1)=delta. All other components of the matrix are zero: A_d=zeros(M). 

To set the edge-based transition parameter beta, we need three indices: one for the initial state, one for the 

final state, and one for the inducer compartment layer. For this reason, we specify that the component of 

matrix A_b equal to beta is the one in position initial state=1 (susceptible), final state=2 (infected), and 

inducer compartment layer 1. This becomes A_b(1,2,1)=beta. All other components also of this matrix 

are equal to zero: A_b=zeros(M,M,L).  

After having created the file for the SIS model parameters, we can modify the initial part of GEMF_main.m, adding 

the numerical values for these parameters. In the specific case illustrated below, we set delta=1 and beta=0.5. We 

then call the function Para_SIS. Finally, we set as initial condition of the epidemic, randomly selected= Population, 

infected=2 nodes=10: x0=Initial_Cond_Gen(N,'Population',[2],[10]) 

% Parameters and initial conditions 

 
delta=1; beta=0.5; 
Para=Para_SIS(delta,beta); M=Para{1}; 
x0=Initial_Cond_Gen(N,'Population',[2],[10]); 
StatesPlot=[1,2]; 
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SIR 
We define Para_SIR following the SIR Table 2. In this model M=3, with 1 being susceptible, 2 being infected 

and 3 being recovered. Now delta is the transition rate from the infected state (2) to the recovered state (3). 

Everything else is the same. 

function Para=Para_SIR(delta,beta) 

 
M=3; q=[2]; L=length(q); 
A_d=zeros(M); A_d(2,3)=delta; 
A_b=zeros(M,M,L); A_b(1,2,1)=beta; 

 
Para={M,q,L,A_d,A_b}; 

 
end 

 

The corresponding new part of GEMF_main.m is as follows, for the specific case of =1 and =0.5: 

% Parameters and initial conditions 

 
delta=1; beta=0.5; 
Para=Para_SIR(delta,beta); M=Para{1}; 
x0=Initial_Cond_Gen(N,'Population',[2],[10]); 
StatesPlot=[1,2]; 

 

SEIR 
We define Para_SEIR following the SEIR Table 3. In this model M=4, with 1 being susceptible, 2 being 

exposed, 3 being infected and 4 being recovered. Now lambda is the nodal-based transition rate from the 

exposed state (2) to the infected state (3), and delta is the transition rate from the infected state (3) to the 

recovered state (4). The inducer compartment here is 3, so q=[3]. Everything else is the same. 

function Para=Para_SEIR(delta,lambda,beta) 

 
M=4; q=[3]; L=length(q); 
A_d=zeros(M); A_d(3,4)=delta; A_d(2,3)=lambda; 
A_b=zeros(M,M,L); A_b(1,2,1)=beta; 

 
Para={M,q,L,A_d,A_b}; 

 
end 

 

The corresponding new part of GEMF_main.m is as follows, for the specific case of =1, =0.3, and =0.5: 

% Parameters and initial conditions 

 
delta=1; lambda=0.3; beta=0.5; 
Para=Para_SIR(delta,lambda,beta); M=Para{1}; 
x0=Initial_Cond_Gen(N,'Population',[2],[10]); 
StatesPlot=[1,2]; 
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SAIS-one layer 
We define Para_SAIS_one following the SAIS model on a one-layer network as defined in Table 4. In this 

model M=3, with 1 being susceptible, 2 being infected, and 3 being susceptible-alert. 

The vector q=[2] represents the inducer compartments in each layer. In this case we have a single layer, so 

the vector has a single component and the value is 2, being 2=infected the inducer compartment. The 

number of layers L in this case is 1, equal to the number of components of vector q.  

To set the node-based transition parameter delta, we specify that the component of the matrix A_d equal to 

delta is the one in position (initial state->final state) of the transition, in this case (IS), equivalent to (2,1). 

This becomes: A_d(2,1)=delta. All other components of the matrix are zero: A_d=zeros(M). 

To set the edge-based transition parameter beta, we need three indices: one for the initial state, one for the 

final state, and one for the inducer compartment layer. For this reason, we specify that the component of 

matrix A_b equal to beta is the one in position initial state=1 (susceptible), final state=2 (infected), and 

inducer compartment layer 1. This becomes A_b(1,2,1)=beta. The component of matrix A_b equal to 

kappa is the one in position initial state=1 (susceptible), final state=3 (susceptible-alert), and inducer 

compartment layer 1. This becomes A_b(1,3,1)=kappa. Finally, the component of matrix A_b equal to 

beta_a is the one in position initial state=3 (susceptible-alert), final state=2 (infected), and inducer 

compartment layer 1. This becomes A_b(3,2,1)=beta_a. All other components also of this matrix are 

equal to zero: A_b=zeros(M,M,L).  

 

function Para=Para_SAIS_one(delta,beta,beta_a,kappa) 

 
M=3; q=[2]; L=length(q); 

  
A_d=zeros(M); A_d(2,1)=delta; 
A_b=zeros(M,M,L); A_b(1,2,1)=beta; A_b(1,3,1)=kappa; A_b(3,2,1)=beta_a; 

  
Para={M,q,L,A_d,A_b}; 

 

After having created the file for the SAIS one-layer model parameters, we can modify the initial part of 

GEMF_main.m, adding the numerical values for these parameters. In the specific case illustrated below, we set 

delta=1, beta=0.5, beta_a=0.3, kappa=0.5. We then call the function Para_SAIS_one. Finally, we set as initial 

condition of the epidemic, randomly selected= Population, infected=2 nodes=10: 

x0=Initial_Cond_Gen(N,'Population',[2],[10]) 

 

delta=1; beta=0.5; beta_a=0.3; kappa=0.5; 
Para=Para_SAIS_one(delta,beta,beta_a,kappa); M=Para{1}; 
StatesPlot=[1,2,3]; 
x0=Initial_Cond_Gen(N,'Population',[2],[10]); 

 

SAIS-two layers 
We define Para_SAIS_two following the SAIS model on a two-layer network as defined in Table 5. In this 

model M=3, with 1 being susceptible, 2 being infected, and 3 being susceptible-alert. 
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The vector q represents the inducer compartments in each layer. In this case we have two layers, so the 

vector has two components and the value is 2, being 2=infected the inducer compartment in both layers. This 

becomes q=[2,2]. The number of layers L in this case is 2, equal to the number of components of vector q.  

To set the node-based transition parameter delta, we specify that the component of the matrix A_d equal to 

delta is the one in position (initial state->final state) of the transition, in this case (IS), equivalent to (2,1). 

This becomes: A_d(2,1)=delta. All other components of the matrix are zero: A_d=zeros(M);. 

To set the edge-based transition parameter beta, we need three indices: one for the initial state, one for the 

final state, and one for the inducer compartment layer. For this reason, we specify that the component of 

matrix A_b equal to beta is the one in position initial state=1 (susceptible), final state=2 (infected), and 

inducer compartment layer 1. This becomes A_b(1,2,1)=beta. The component of matrix A_b equal to 

kappa is the one in position initial state=1 (susceptible), final state=3 (susceptible-alert), and inducer 

compartment layer 1. This becomes A_b(1,3,1)=kappa. The component of matrix A_b equal to beta_a is 

the one in position initial state=3 (susceptible-alert), final state=2 (infected), and inducer compartment layer 

1. This becomes A_b(3,2,1)=beta_a. Finally, the component of matrix A_b equal to mu is the one in 

position initial state=1 (susceptible), final state=3 (susceptible-alert), and inducer compartment layer 2. This 

becomes A_b(1,3,2)=mu. All other components of this matrix are equal to zero: A_b=zeros(M,M,L). 

 

function Para=Para_SAIS_two(delta,beta,beta_a,kappa,mu) 

 
M=3; q=[2,2]; L=length(q); 

  
A_d=zeros(M); A_d(2,1)=delta; 
A_b=zeros(M,M,L); A_b(1,2,1)=beta; A_b(1,3,1)=kappa; A_b(3,2,1)=beta_a; 

A_b(1,3,2)=mu; 

  
Para={M,q,L,A_d,A_b}; 

 

After having created the file for the SAIS two-layer model parameters, we can modify the initial part of 

GEMF_main.m, adding the numerical values for these parameters. In the specific case illustrated below, we set 

delta=1, beta=0.5, beta_a=0.3, kappa=0.5, and mu=0.5. We then call the function Para_SAIS_two. Finally, we set as 

initial condition of the epidemic, randomly selected= Population, infected=2 nodes=10: 

x0=Initial_Cond_Gen(N,'Population',[2],[10]). 

 

delta=1; beta=0.5; beta_a=0.3; kappa=0.5; mu=0.5; 
Para=Para_SAIS_two(delta,beta,beta_a,kappa,mu); M=Para{1}; 
StatesPlot=[1,2,3]; 
x0=Initial_Cond_Gen(N,'Population',[2],[10]); 
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SI1SI2S 
Recalling Table 6 that illustrates parameters and inducer states for the SI1SI2S model on a two-layer network, 

we have: 

Table 6. Descriptors of the SI1SI2S two layer model 

Susceptible-Infected 1-Susceptible- Infected 2-Susceptible 

States Transition Type Transition 
parameter 

Inducer Layer 

S (susceptible) 

I1 (infected by virus 1) 

I2 (infected by virus 2) 

(SI1) edge-based 1 Neighbors in state I Contact Network N1 

(SI2) edge-based 2 Neighbors in state I Contact Network N2 

(I1S) node-based 1   

(I2S) node-based 2   
 

 

Here, M=3 represents the number of compartments, index 1 representing compartment susceptible, index 2 

representing compartment infected by virus 1, and index 3 representing compartment infected by virus 2. The 

vector q=[2, 3] represents the inducer compartments in each layer. In this case we have two layers, so the 

vector has two components and one value is 2, being 2=infected-by-virus-1 the inducer compartment in layer 

1 and the other value is 3, being 3=infected-by-virus-2 the inducer compartment in layer 2. The number of 

layers L in this case is 2, equal to the number of components of vector q.  

To set the node-based transition parameter delta, we specify that the component of the matrix A_d equal to 

delta_1 is the one in position (initial state->final state) of the transition, in this case (I1S), equivalent to 

(2,1). This becomes: A_d(2,1)=delta_1. The component of the matrix A_d equal to delta_2 is the one in 

position (initial state->final state) of the transition, in this case (I2S), equivalent to (3,1). This becomes: 

A_d(3,1)=delta_2. All other components of the matrix are zero: A_d=zeros(M). 

To set the edge-based transition parameter beta, we need three indices: one for the initial state, one for the 

final state, and one for the inducer compartment layer. For this reason, we specify that the component of 

matrix A_b equal to beta_1 is the one in position initial state=1 (susceptible), final state=2 (infected by virus 

1), and inducer compartment layer 1. This becomes A_b(1,2,1)=beta_1. The component of matrix A_b 

equal to beta_2 is the one in position initial state=1 (susceptible), final state=3 (infected by virus 3), and 

inducer compartment layer 2. This becomes A_b(1,3,2)=beta_2 All other components also of this matrix 

are equal to zero: A_b=zeros(M,M,L).  

After having created the file for the SIS model parameters, we can modify the initial part of GEMF_main.m, adding 

the numerical values for these parameters. In the specific case illustrated below, we set delta=1 and beta=0.5. We 

then call the function Para_SIS. Finally, we set as initial condition of the epidemic, randomly selected= Population, 

infected=2 nodes=10: x0=Initial_Cond_Gen(N,'Population',[2],[10]) 

function Para=Para_SI1SI2S(delta_1,delta_2,beta_1,beta_2) 

 
M=3; q=[2,3]; L=length(q); 
A_d=zeros(M); A_d(2,1)=delta_1; A_d(3,1)=delta_2; 
A_b=zeros(M,M,L); A_b(1,2,1)=beta_1; A_b(1,3,2)=beta_2 

 
Para={M,q,L,A_d,A_b}; 

 
end 
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After having created the file for the SI1SI2S two-layer model parameters, we can modify the initial part of 

GEMF_main.m, adding the numerical values for these parameters. In the specific case illustrated below, we set 

delta_1=1, delta_2=1, beta_1=0.5, beta_2=0.3. We then call the function Para_SI1SI2S. Finally, we set as initial 

condition of the epidemic, randomly selected= Population, infected=2 nodes=10: 

x0=Initial_Cond_Gen(N,'Population',[2],[10]). 

 

delta_1=1; delta_2=1;beta_1=0.5; beta_2=0.3; 
Para=Para_SI1SI2S(delta_1,delta_2,beta_1,beta_2); M=Para{1}; 
StatesPlot=[1,2,3]; 
x0=Initial_Cond_Gen(N,'Population',[2],[10]); 

 

 

How can I implement my new epidemic model? 
Any other model can be easily implemented following the procedure we have explained to create a variety of 

models above.  

We conclude this tutorial summarizing the steps needed to adapt GEMF to your own epidemic model. 

Step 1 – Define the network and its layers 

Step 2 – Define the node transition graph 

Step 3 – Define the model’s parameter table 

Step 4 – Create the file Para 

Step 5 – Modify GEMF_main.m to input the network and the parameters correctly. 
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