
GEMF: GENERALIZED EPIDEMIC MODELING FRAMEWORK
SOFTWARE IN PYTHON

HEMAN SHAKERI

Network Science and Engineering Group (NetSE)
Department of Electrical and Computer Engineering

Kansas State University
Manhattan, KS 66506-5204, USA

1. Examples in Python

In order to the determine nodal and edge-based transitions rates, we use node transition graph. We used
NetworkX in our examples because of due to its ubiquitous use, although a user can consider other modules
with minor alterations in the codes.

However, for individual-based epidemic models, transition graphs represent only the transition mecha-
nism for each node in the network and not for the entire population. When defining an epidemic model,
compartments should be defined first; For example, the SIS model has only two compartments: susceptible
and infected.
Second, transitions between compartments, transition rates and their types should be defined. The inducer
compartment and layers that define neighbor nodes must also be specified.

The following sections present examples of epidemic models that we simulated with Gemf. To implement
the following sections user should import Gemf with the following line1.

1 from GEMFPy import *

1.1. SIS. As mentioned, each node in an SIS model can be susceptible or infected; therefore, the number
of compartments was denoted by M = 2. A susceptible node can become infected if it is surrounded by
infected nodes. Infection process of a node with one infected neighbor is a Poisson process with transition
rate β. The infection processes are stochastically independent of each other; therefore, for a susceptible node
with more than one infected node in its neighborhood, the transition rate is the infection rate β times the
number of infected neighbor nodes. The neighborhood of each node is determined by a contact network N .
In addition to the infection process, a recovery process also exists. An infected node becomes susceptible
again with a curing rate δ. The main characteristics and a node transition graph for the SIS model are
shown in Table 1 and Figure 1.

Table 1. Descriptions of the SIS model

SIS
State Transition Type Parameter Inducer Layer

S (S → E) edge-based β Neighbors in I 1
I (I → S) node-based δ

Parameters in Table 1 can be entered by the following lines:

1 beta = 0.8; delta = 1;

2 Para = Para_SIS(delta ,beta)

3 Net = NetCmbn ([MyNet(G)])

where the function Para-SIS is defined as

1The latest version of Gemf can be found here.
1

http://ece.k-state.edu/netse/software/index.html

GemfPy NETSE Group

S I

I, β, N

δ

Contact Network N

Figure 1. Schematic of the network-based SIS model

1 def Para_SIS(delta ,beta):

2 M = 2; q = np.array ([1]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][0] = delta

4 A_b = []

5 for l in range(L):

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 Para=[M,q,L,A_d ,A_b]

9 return Para

we can choose initial condition such that two nodes are initially in the first inducer compartment2 and
others are in the first compartment:

1 x0 = np.zeros(N)

2 x0 = Initial_Cond_Gen(N, Para [1][0] , 2, x0)

1.1.1. Simulation. After defining Para for SIS model, we simulated an SIS model with β = 1.2 and δ = 1,
as shown in Figure 2. The simulation can be done by the following lines of codes: First define the duration
of simulation

1 StopCond = [’RunTime ’, 20]

and finding the events:

1 ts, n_index , i_index , j_index = GEMF_SIM(Para , Net , x0, StopCond ,n)

One output of the simulation can be the history for population of each compartment:

1 T, StateCount = Post_Population(x0 , M, n, ts , i_index , j_index)

In Figure 2, the fraction of nodes in each state is shown.

2Python is using 0-based indexing.
2

NETSE Group GemfPy

0 1 2 3 4 5 6

Time (day)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
P
o
p
u
la

ti
o
n

SIS

Susceptible

Infected

Figure 2. Simulation of the SIS model

Due to stochast nature of the simulation, we can repeat it for N times with the following line of codes
with steps (see Section 2.4):

1 N = 2

2 T_final = 3

3 step = .1

4 Init_inf = 2

5 t_interval , f = MonteCarlo(StopCond , Init_inf , M, T_final , step , N, n)

where n is the entire population size, step is the chosen time step and f is the averaged population of each
compartment in the time step.

1.2. SIR. In the Susceptible-Infected-Recovered (SIR) model, each node can be either susceptible, infected,
or recovered (immune). Therefore, the number of compartments, denoted by M ,in the SIR model, was
M = 3. A susceptible node can become infected if it is surrounded by infected nodes. The infection process
of a node with one infected neighbor is a Poisson process with transition rate β. Similar to SIS, infection
processes are stochastically independent of each other. In addition to the infection process, a recovery process
also exists. An infected node recovers and becomes immune with a recovery rate δ. The main characteristics
and a node transition graph for the SIR model are shown in Table 2 and Figure 3.

Table 2. Descriptors of the SIR model

SIR multilayer
State Transition Type Parameter Inducer Layer

S (S → E) edge-based β Neighbors in I 1
I (I → R) node-based δ
R

Parameters in Table 2 can be entered by the following lines:

1 beta = 1.2; delta = 1;

2 Para = Para_SIR(delta , beta)

3 Net = NetCmbn ([MyNet(G)])

where the function Para-SIR is defined as
3

GemfPy NETSE Group

1 def Para_SIR(delta , beta):

2 M = 3; q = np.array ([1]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][2] = delta

4 A_b = []

5 for l in range(L):

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 Para=[M,q,L,A_d ,A_b]

9 return Para

S I R

I, β, N δ

Contact Network N

Figure 3. Node transition graph for the SIR model for nodes in N

1.2.1. Simulation. After defining Para for SIR model, we simulated an SIR model with β = 1.2, δ = 1, as
shown in Figure 3 for a Barabasi-Albert network with 500 nodes. Method is similar to SIS simulation in
Section 1.1.1.

1.2.2. SEIR. In the Susceptible-Exposed-Infected-Recovered (SEIR) model, each node can be susceptible,
exposed, infected, or recovered (immune). Therefore, M = 4. A susceptible node can become exposed, if
it is surrounded by infected nodes. The infection process of a node with one infected neighbor is a Poisson
process with transition rate β. The neighborhood of each node is determined by a contact network N . An
exposed node is not yet infectious, but it will transition to the infected state with rate λ. Finally, an infected
node recovers with a recovery rate δ. The main characteristics and a node transition graph for the SEIR
model are shown in Table 3 and Figure 5.

Parameters in Table 3 can be entered by the following lines:

1 beta = 1.5; delta = 1; Lambda = .5

2 Para = Para_SEIR(delta , beta , Lambda)

3 Net = NetCmbn ([MyNet(G)])

where the function Para-SEIR is defined as
4

NETSE Group GemfPy

0 1 2 3 4 5 6 7

Time (day)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
P
o
p
u
la

ti
o
n

SIR

Susceptible

Infected

Recovered

Figure 4. Simulation of the SIR model

Table 3. Descriptors of the SEIR

[h!]

SEIR multilayer
State Transition Type Parameter Inducer Layer

S (S → E) edge-based β Neighbors in I 1
E (E → I) node-based λ
I (I → R) node-based δ

1 def Para_SEIR(delta , beta , Lambda):

2 M = 4; q = np.array ([2]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][2] = Lambda; A_d [2][3] = Lambda

4 A_b = []

5 for l in range(L):

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 Para=[M,q,L,A_d ,A_b]

9 return Para

1.2.3. Simulation. After defining Para for SEIR model, we simulated an SEIR model with β = 1.2, δ = 1
and λ = .4, as shown in Figure 6.

1.3. SAIS. The Susceptible-Alert-Infected-Susceptible (SAIS) model was developed to incorporate individ-
ual reactions to the spread of a virus. In the SAIS model, each node (individual) can be susceptible, infected,
or susceptible-alert. Therefore, the number of compartments in the SAIS model was M = 3. The recovery
process is similar to recovery process in the SIS model, characterized by the recovery rate δ. The infection
process of a susceptible agent is also similar to the infection process of the SIS model, determined by infection
rate β and contact network N . However, in the SAIS model, a susceptible node can become alert if it senses
infected agents in its neighborhood. The alerting transition rate is κ times the number of infected agents.
An alert node can also become infected by a process similar to the infection process of a susceptible node.
However, the infection rate for alert nodes is lower than susceptible nodes due to the adoption of preventive
behaviors. The alert infection rate is denoted by βa with 0 < βa < β. The main characteristics and a
schematic for the SAIS model are shown in the following Table 4 and Figure 7.

Parameters in Table 4 can be entered by the following lines:

1 Para = Para_SAIS_Single(delta , beta , beta_a , kappa)

5

GemfPy NETSE Group

S E I R

I, β, N λ δ

Contact Network N

Figure 5. Node transition graph for the SEIR model for nodes in N

0 5 10 15 20 25

Time (day)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
P
o
p
u
la

ti
o
n

SIR

Susceptible

Exposed

Infected

Recovered

Figure 6. Simulation of the SEIR model

Table 4. Descriptors of the SAIS single layer model.

SAIS single Layer
State Transition Type Parameter Inducer Layer

S
(S → I) edge-based β Neighbors in I 1
(S → A) edge-based κ Neighbors in I 1

I (I → S) node-based δ
A (A→ I) edge-based βa Neighbors in I 1

6

NETSE Group GemfPy

where the function Para-SAIS for single layer is defined as

1 def Para_SAIS_Single(delta , beta , beta_a , kappa):

2 M = 3; q = np.array ([1]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][0] = delta

4 A_b = []

5 for l in range(L):

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 A_b [0][0][2] = kappa

9 A_b [0][2][1] = beta_a

10 Para = [M, q, L, A_d , A_b]

11 return Para

A

S I

I, βa, NI, κ, N

I, β, N

δ1

Contact Network N

Figure 7. Node transition graph for the SAIS one layer model for nodes in N

1.3.1. Simulation. After defining Para for SAIS model, we simulated an SAIS model in one-layer (N), with
β = 5

λ1(G1) , δ = 1 and βa = 0.5
λ1(G1) , and κ = 0.2β, as shown in Figure 8.

7

GemfPy NETSE Group

Figure 8. Simulation of the SAIS single layer model.

1.3.2. SAIS Multilayer. The SAIS model on a two layer network was developed to incorporate multiple
sources of information to react to the spread of the virus. In the SAIS spreading model, each node (individual)
can be either susceptible, infected, or susceptible-alert. Again, the number of compartments in the SAIS
model was M = 3. The infection process of a susceptible agent was also similar to the infection process
of the SIS model, determined by infection rate β and contact network NA. However, in this version of the
SAIS model, a susceptible node can become alert if it senses infected agents in its contact neighborhood or
if it is notified about infected neighbors in an information network NB . The alerting transition rate is κ
times the number of infected agents in the contact network and µ times the number of infected agents in the
notification network. An alert node can also become infected by a process similar to the infection process
of a susceptible node. However, the infection rate for alert nodes βa is lower than β due to the adoption of
preventive behaviors such as using masks. The main characteristics and a schematic for the SAIS-2 layer
model are shown in Table 5 and Figure 10.

Table 5. Descriptors of the SAIS two-layer model

SAIS multilayer
State Transition Type Parameter Inducer Layer

S
(S → I) edge-based β Neighbors in I 1
(S → A) edge-based κ Neighbors in I 1
(S → A) edge-based µ Neighbors in I 2

I (I → S) node-based δ
A (A→ I) edge-based βa Neighbors in I 1

Parameters in Table 5 can be entered by the following lines:

1 lambda1 = EIG1(G)[0]; delta = 1; beta = 5/ lambda1; beta_a = .5/ lambda1;

kappa = .2* beta; mu = .5* beta

2 Para = Para_SAIS(delta , beta , beta_a , kappa , mu)

where the function Para-SAIS for two layer is defined as

1 def Para_SAIS(delta , beta , beta_a , kappa , mu):

2 M = 3; q = np.array ([1 ,1]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][0] = delta

4 A_b = []

5 for l in range(L):

8

NETSE Group GemfPy

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta #[l][M][M]

8 A_b [0][0][2] = kappa

9 A_b [1][2][1] = beta_a

10 A_b [1][0][2] = mu

11 Para = [M, q, L, A_d , A_b]

12 return Para

A

S I

I, βa, NAI, µ, NB

I, κ, NA

I, β, NA

δ1

Contact Network NB

Contact Network NA

Figure 9

Figure 10. Node transition graph for the SAIS two-layer model on network
with layers NA and NB.

1.3.3. Simulation. After defining Para for SAIS model, we simulated the process with β = 5
λ1(G1) , δ = 1

and βa = 0.5
λ1(G1) , κ = 0.2β, and µ = 0.5β, as shown in Figure 11.

1.4. Multiple interacting pathogen spreading SI1SI2S. Assigning only one influencer compartment to
one network layer allows different elegant analysis. However, a more general possibility is that an edge-based
transition m → n occurs if a neighbor j, is in a subset of the compartments, such as ql,1 or ql,2. This case
can be treated within the same structure, allowing the network layer to be counted twice. For example, we
assumed that in the first layer the model had the influencer compartment ql,1, and in the second layer, the
graph has the influencer compartment ql,2.

The SI1SI2S model is an extension of continuous-time SIS spreading of a single virus on a simple graph,
to the modeling of competitive viruses on a two-layer network. In this model, each node is either susceptible,
1-infected, or 2-infected (i.e., infected by Virus 1 or 2, respectively). Virus 1 spreads through network N1,
virus 2 spreads through network N2. In this competitive scenario, the two viruses are exclusive: a node

9

GemfPy NETSE Group

0 5 10 15 20 25

Time (day)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
P
o
p
u
la

ti
o
n

SAIS 2-Layer

Susceptible

Infected

Alert

Figure 11. Simulation of the SAIS in 2 layer

cannot be infected by Virus 1 and Virus 2 simultaneously. Consistent with SIS propagation on a single layer,
the infection and recovery processes for Virus 1 and 2 have similar characteristics. The curing process for
1-infected Node i is a Poisson process with recovery rate δ1 > 0. The infection process for susceptible Node
i effectively occurs at rate βiYi (t), where Yi (t) is the number of 1-infected neighbors of node i at time t in
layer N1. Recovery and infection processes for Vvirus 2 are similarly described. The main characteristics
and a node transition graph for the SI1SI2S model are shown in Table 6 and Figure 12.

Table 6. Descriptions of the SI1SI2S model. S: suscpetible, I1: infected by
virus 1, I2: infected by virus 2,

SI1SI2S
State Transition Type Parameter Inducer Layer

S
(S → I1) edge-based β1 Neighbors in I2 1
(S → I2) edge-based β2 Neighbors in I2 2

I1 (I1 → S) node-based δ1
I1 (I2 → S) node-based δ2

Parameters in Table 6 can be entered by the following lines in two different networks N1 (G) and N2 (H):

1 N = G.number_of_nodes ()

2 lambda1_1 = EIG1(G)[0]; lambda1_2 = EIG1(H)[0]; delta1 = 1; beta1 = 5/

lambda1_1; delta2 = 1; beta2 = 5/ lambda1_2;

3 Para = Para_SI1I2S(delta1 , delta2 , beta1 , beta2)

4 Net = NetCmbn ([MyNet(G), MyNet(H)])

5 x0 = np.zeros(N)

6 x0 = Initial_Cond_Gen(N, Para [1][0] , 20, x0)

7 x0 = Initial_Cond_Gen(N, Para [1][1] , 20, x0)

where the function Para-SI1SI2S is defined as

1 def Para_SI1I2S(delta1 , delta2 , beta1 , beta2):

2 M = 3; q = np.array ([1 ,2]); L = len(q);

3 A_d = np.zeros((M,M)); A_d [1][0] = delta1; A_d [2][0] = delta2

4 A_b = []

5 for l in range(L):

10

NETSE Group GemfPy

6 A_b.append(np.zeros((M,M)))

7 A_b [0][0][1] = beta1 #[l][M][M]

8 A_b [1][0][2] = beta2 #[l][M][M]

9

10 Para = [M, q, L, A_d , A_b]

11 return Para

S

I1 I2

I, β2, NI, β1, N

δ2 δ1

Contact Network N1

Contact Network N2

Figure 12. Node transition graph for the SI1SI2S in two layer model

1.4.1. Simulation. After defining Para for this model, we simulate an S1SI2S model in one layer with
β1 = 5

λ1(G1) , β2 = 5
λ1(H1)

, δ1 = 1 and δ2 = 1 in Figure 13.

2. An overview of the functions

In the subsequent sections, we describe the following functions of Gemf:

(1) Initialization functions
(a) Net
(b) NetComb
(c) Para
(d) InitialCond

(2) Simulations
(a) Sim
(b) PostProcess
(c) MonteCarlo

(3) Output
(a) Visualization

11

GemfPy NETSE Group

Figure 13. Simulation of the S1SI2S model

2.1. Initialization.

2.1.1. “Net”: Converting network data. Gemf converts graph information into graph adjacency list format
with function Net; therefore, we recorded i, j, and w in vectors L2, L1 and W for each edge (i, j, w) . L2 are
neighbors of L1 with weight W , and we sorted L2 and re-arranged L1 and W with resulting sorted arguments
in order to organize these data. All network data was acquired with L1, L2 and W .

The NeighborhoodData function was used, which takes L1 and L2 as its inputs and returns 5 vectors
outputs. Neighvec and NeighWeight are vectors of neighbors, and their weights I1 and I2, respectively, are
node indices and d is their edge multiplicity. Benefits of this representation are described in Section 2.2.

We defined NNeighborhoodData in order to distinguish between neighbors of node i with nodes that
have i as neighbors. This function, is useful when we are dealing with a directed network and has the same
structure as the previous function. Outputs of this function, NNeighvec and NNeighWeight, are vectors of
adjacent nodes (not neighbors) and their edge weights respectively and NI1 and NI2 are indices and Nd is
edge multiplicity. Function Net returns all above information for a single layer.

2.1.2. Combining network layers data. For each layer, we obtained the required information from Net, and
we combined them with the NetComb function.

NetComb ({Net1, · · · , NetL}) =

[[Net1 (1) , · · · , NetL (1)] , · · · , [Net1 (H) , · · · , NetL (H)]]1×L(1)

where Netl = Net (Gl).

2.1.3. Transition rates. We used Para function to enter the required data for transition rates, as described
in Section ??. A nodal transition rate matrix is an M ×M matrix in which entry mn represents the rate of
nodal transition m→ n:

(2) Aδ , [δmn]M×M .

An edge-based transition rate matrix, corresponding to the network layer l, is an M ×M matrix in which
entry mn represents the rate βl,mn > 0 of edge-based transition m→ n:

(3) Aβ ,
[
[β1,mn]M×M , · · · , [βL,mn]M×M

]
1×L

Examples of how to use this functions are presented in Section 1.
12

NETSE Group GemfPy

2.1.4. Initial condition. With “InitialCondGen” function the initial status of each individual in the pop-
ulation can be determined and various approaches can be used to do this.

• User input: Initial condition is directly chosen by the user.
• Fixed initial infected population: NJ individuals randomly chosen to be in compartment J .

2.2. Simulations. Gemf uses an event-driven approach to simulate the stochastic process. This method
is advantageous compared to the discretized method. For example, in discretization approach, no transition
may occur in several time increments dt or several transition may occur in one time increment; therefore,
computation time for the event-based method is not unnecessarily longer and on the other side the solution
is more accurate and captures more events compared to the discretized method (See [?], [?]).

Number of neighbors in influencer compartment Nq. As discussed in Section ??, one of the key factors in
edge-based transitions is the number of neighbors in influencer compartment, Nq. Nq is an L × N array,
representing the number of influencer compartment for each node in each layer, weighted by edge weights.
Because node status changes in each event, Nq is updated after each event. From Section 2.1.4, initial

status of all nodes X0
M×N is obtained. For example, if X [:, 4]

T
=
[
0 1 · · · 0

]
1×M , then node 4 is in

compartment 2.
To compute Nq, Gemf goes over all nodes in each layer. Using network data from NetComb, all neighbors

of node n in layer l can be derived via

(4) Nln = Neigh [l] [I1 [l, n] : I2 [l, n]]

with weights:

(5) Wln = NeighWeight [l] [I1 [l, n] : I2 [l, n]] .

Using (5), entries of Nq (influencer neighbors) can be determined by

(6) Nq [l, n] =

|Nln|∑
i=1

X [q [l] , Nln [i]] ·Wln [i]

where |Nln| is the cardinality of set Nln.

2.2.1. Rate of changes. From Section 2.1.3, we entered Aβ and Aδ through Para. The simulation code
initially generated bil, which is an arrays:

bil ,

∑M
i=1 β1,1i

...∑M
i=1 β1,Mi

M×1

· · ·

∑M
i=1 βL,1i

...∑M
i=1 βL,Mi

M×1

1×L

(7)

where bil represents the sum of edge-based transition rates of each compartment in each layer.
The array of edge-based transition rates matrix for each compartment in all layers bi was

bi ,

β1,11 · · · βL,11
β1,12 · · · βL,12

...
. . .

...
β1,1M · · · βL,1M

M×L

· · ·

β1,21 · · · βL,21
β1,22 · · · βL,22

...
. . .

...
β1,2M · · · βL,2M

M×L

1×M

(8)

For each compartment, the total leaving rate due to nodal transition was derived from 2 (by summing up
each row of matrix Aδ):

(9) di =

∑M
i=1 δ1i

...∑M
i=1 δMi

M×1

.

13

GemfPy NETSE Group

2.2.2. Total Rates. Using di and bil, total transition rates for each node were generated as

Rin = (di11×N)M×N ◦X + (bilNq)M×N ◦X(10)

where ◦ represents element-wise multiplication.
In order to find the total rate of change for the entire system, we re-added the rates. For example, for the

total rate of change for each compartment in the entire network, we introduce Ri:

(11) Ri =

∑N
i=1Rin [1, i]

...∑N
i=1Rin [M, i]

M×1

and for the total rate of change for the entire system, we introduced R:

(12) R =

M∑
i=1

Ri [i] .

2.2.3. Updating system status after an event. The initial state for all nodes was generated according to
Section 2.1.4. Because all random processes are Poisson processes, the assumption was made that the next
event would occur in time δt:

(13) δt =
− ln(rand)

R

where 0 ≤ rand ≤ 1 is a generated random number. During this event one of the nodes changes its status.
We determined which compartment changed by drawing a sample among M compartments with probability
distribution Ri; this compartment was called is.

Once the leaving compartment was identified, we wanted to know which node experienced the transition.
Therefore, we drew a sample from N nodes with probability distribution Rin [is, :] (i.e., is row of matrix
Rin) and called this Node ns.

To find the new status (compartment) of Node ns, again Gemf randomly draws the new compartment
js among M compartments with the following probability distribution:

(14) pTjs = Aδ [is, :]
T

+ bi [is]Nq [:, ns] .

Drawing samples with given probability distribution is done with RndDraw function.

With δt, is, js, and ns, Gemf had all necessary information to update the network status and apply
required changes with the occurred event. However, Gemf had to update X matrix and the future rate of
transitions.

Because Node ns changed its status from is to js, we have:

(15) X [is, ns] = 0, X [js, ns] = 1.

To update Ri, we subtracted the column in Rin that corresponded to Node ns (i.e., Rin [:, ns]) and then we
updated

(16) Rin [:, ns] = di ◦X [:, ns] + (biNq [:, ns]) ◦X [:, ns] .

Now we add Rin [:, ns] to Ri. Next if any of the old or new compartment are in influencer category in any
layer, code should update Nq matrix. First, we find neighbors of node ns:

Nln = Neigh [l] [I1 [l] [ns] : I2 [l] [ns]](17)

WeightedNeigh = NeighW [l] [I1 [l] [ns] : I2 [l] [ns]](18)

(19)

Then we conducted the following steps for all these neighbors:
14

NETSE Group GemfPy

• If the old compartment is was an influencer compartment in layer l, we do the following removed
ns as their infected neighbors and recorded the weight of the edge. We also updated Rin. For n,
the k’th neighbor of ns was

Nq [l] [n]− = NNeighW [l] [NI1 [l] [ns] + k](20)

Rin [:, n]− = NNeighW [l] [NI1 [l] [ns] + k] (bil [:, n] ◦X [:, n])(21)

where − = indicates subtracting to current value.
• If the new compartment js was an influencer compartment in layer l, we added ns as their infected

neighbors and recorded the weight of the edge. We also updated Rin. For n, the kth neighbor of
ns was

Nq [l] [n] + = NNeighW [l] [NI1 [l] [ns] + k](22)

Rin [:, n] + = NNeighW [l] [NI1 [l] [ns] + k] (bil [:, n] ◦X [:, n])(23)

where + = indicates adding to current value.

We stacked ns, js, and is into nindex, jindex, and iindex, respectively, and then we recalculated Ri and R
and prepared for the next event.

2.3. Post processing. From Sim, we obtained the set of time increments of occurring events, ts. The
cumulative sum of ts, T , was the time history of events. StateCount, an M × (|ts|+ 1) array conveying the
total number of nodes in each compartment in each time step, , was also generated. The First column of
StateCount is initial condition:

(24) StateCount [:, 1] =

N∑
i=1

X0 [:, i] .

For the remainder of StateCount, PostPopulation generated a temporary array DXM×1 in each event,
with the following non-zero elements:

DX [iindex [k]] = −1(25)

DX [jindex [k]] = 1,(26)

and zero on the other elements. In each event, we obtained the following recursion:

(27) StateCount [:, k + 1] = StateCount [:, k] +DX

PostPopulation returns T and StateCount.

2.4. Monte carlo simulation. In order to obtain a reliable result for stochastic simulation, it is necessary
to repeat random processes had to be repeated for many times and the results need to be averaged.

In an event-based analysis, the number of events are not identicale for different simulations; therefore,
arrays that show the state of the group in each simulation will not be of the same size and they cannot be
added and averaged.
In order to average several random processes, a ubiquitous time interval with a desired time increment must
be defined.
Therefore, the function MonteCarlo, uses histogram counting. For all simulations, it finds the closest
previous event for the time increments and then maps these events on the new time interval. With the new
unified time scale, the average of all processes was derived.

1 Network Science and Engineering Group, Department of Electrical and Computer
Engineering, Rathbone Hall, Kansas State University, Manhattan, KS 66506, USA

E-mail address: heman@ksu.edu

15

	1. Examples in Python
	1.1. SIS
	1.2. SIR
	1.3. SAIS
	1.4. Multiple interacting pathogen spreading SI1SI2S

	2. An overview of the functions
	2.1. Initialization
	2.2. Simulations
	2.3. Post processing
	2.4. Monte carlo simulation

