
List of Functions
• GEMF SIM: This function generate a realization of epidemic process over a network.

• Post Population: Analyzes the output of GEMF SIM function and calculates the population of each
comportment(nodestate) through time.

• Post NodesState: After executing GEMF -SIM, Post NodesState function can be used in order to obtain
the state of each individual node of network at different time instants.

• GEMF SIM Prob: This function generates several realizations of the epidemic process. The output
of GEMF SIM Prob can be used to estimate the probability distribution of finding a node in different
nodestates as a function of time.

• Net Import: Reads a txt file that contains the information for a single layer network and produces the
parameter Net which can be fed into the GEMF SIM function as a input argument.

• NetCmbn: This function combines single-layer networks into one multilayer network.

• Para SIS: Generates an argument Para from the specification of the SIS epidemic model. GEMF SIM
function can use the output of Para SIS as an input argument.

• Para SAIS 2layer: Generates the argument Para from the specification of the SAIS epidemic model over
a two-layer network. GEMF SIM function can use the output of Para SIS 2layer as an input argument.

• NetGen Geo: Generates Net parameter for the random geometric graph.

• NetGen ER: Generates Net parameter for the Erdos-Renyi random graph.

Description
• GEMF SIM

lst=GEMF SIM(Para,Net,x0,maxNumevent,Runtime,N)
GEMF SIM function uses the algorithm described in [cite] in order to generate one realization of a epidemic
process over a network. In general each node of network can be in one of the M states (compartments)
and the transition to another state depends on the state of the node and the state of its neighbors in
different layers.

Input Arguments

1. Para The input Para is a list that contains the parameters which define the spreading model,
Para=list(M,q,l,A d,A b). Here M and l are the number of compartments and the layers, respectively.
q is a 1× l matrix where q[1, s] is the influencer compartment for layer s. The nodal based transition
matrix ,A d, is a M ×M matrix with elements A d[i, j] that specifies the the nodal based transition
rate from compartment i to j. The other element of Para is A b which is a M ×M × l array. The
element A b[i, j, s] is the transition rate of a node from compartment i to j if it has a neighbor in
layer s and the state of the neighbor is q[1, s].

2. Net Here Net is a list of elements that specifies the contact network, Net=list(Neigh,I1,I2). I1 and
I2 are l ×N matrices where l is the number of layers and N is the number of nodes in the network.
Neigh is a list that contains l matrices where each matrix has 2 rows. The neighbors of node n in
the layer s are the element of the vector v = Neigh[[s]][1, I1[s, n] : I2[s, n]].These are the nodes that
can be potentially affected by the node n. Moreover the weight of the link between node n and its
neighbors, obtained from vector v, are Neigh[[s]][2, I1[p, n] : I2[p, n]] respectively.

3. maxNumevent
4. Runtime

maxNumevent and Runtime determine how the simulation terminates. In fact simulation will stop if
the number of event reaches maxNumevent or the total evolution time reaches the Runtime

5. N is the number of node in the network

1



6. x0 is a vector with the length N that stores the initial state of each node. For example if the node
n is initially in compartment m then x0[n] = m. GEMF SIM uses x0 as a initial condition for the
network.

Output Argument The output of GEMF SIM is a list which contains the summary of simulation.
lst=list(ts,n index,i index,j index,Tf,lasteventnumber)

1. lasteventnumber
2. Tf

The simulation stops if any of these cases happen: (a) the number of events reaches the input
argument maxNumevent. (b) the total evolution time reaches the input argument Runtime. (c)
the system reaches equilibrium, in a sense that the rate of changes in the system is smaller than
a specified threshold. Hence it is possible that the total number of events would be smaller than
maxNumevent or the time span of simulation would not become Runtime. In general, the output
arguments lasteventnumber and Tf are the total total number of events and the time duration of
simulation.

3. ts is a vector with a length which is equal to the input parameter maxNmevent and stores the time
interval between the events[cite paper]. For example, ts[i] is the time interval between (i − 1)th
and (i)th events. Since the number of events that happen in the simulation equals the output
argument lasteventnumber, all the elements of ts with index i greater than lasteventnumber are zero.
ts[i] = 0 if i > lasteventnumber. Moreover Tf =

∑lasteventnumber
i=1 ts[i].

4. n index
5. i index
6. j index

Considering the event based algorithm [cite paper]adopted for the simulation, we use the the output
arguments n index, i index and j index in order to keep the record of the events. These output
arguments are vectors with the length equals to maxNumevent. The (i)th event is a transition where
the node n index[i] changes its state from the compartment i index[i] to the compartment j index[i].

• Post Population

lst2=Post Population(x0,M,N,ts,i index,j index,lasteventnumber)
For one realization of the spreading process, generated by GEMF SIM function, we can use the Post Population
function to obtain the number of the nodes, at different time instants, that have a specific state.

Input Arguments

1. ts
2. i index
3. j index
4. lasteventnumber

The parameters ts, i index, j index and lasteventnumber are the output of GEMF SIM function.
5. x0 is a vector that stores the initial states of the nodes. This parameter is the same input argument

used for GEMF SIM function.
6. M is the number of node states.
7. N is the number of nodes in the network.

Output Argument The output of Post Population function is a list that contains the numeric vector T
and the StateCount matrix. lst2=list(T,StateCount).

1. T stores the times in the simulation that an event happened and it is calculated using the cumulative
sum of ts as T=c(0,cumsum(ts[1:lasteventnumber])).

2. StateCount matrix has the dimension M × t, where M is the number of node states and t is the
length of the output vector T. The StateCount matrix stores the population of each comportment
at the time-points specified by the elements of T. Thus, considering one realization of the spreading
process using GEMF SIM, the StateCount[i,j] is the number of nodes that were in the compartment
i in the time interval [T [j], T [j + 1]).

2



• Post NodesState

lst3=Post NodesState(x0,M,N,ts,n index,j index,lasteventnumber,timstp,Runtime)
For one realization of the spreading process, generated by GEMF SIM function, Post NodesState function
can be used to retrieve the state of each individual node at different time instants.

Input Arguments

1. ts
2. n index
3. j index
4. lasteventnumber

The parameters ts, n index, j index and lasteventnumber are the output of GEMF SIM function.
5. x0 is a vector that stores the initial states of the nodes. This parameter is the same input argument

used for GEMF SIM function.
6. M is the number of node states.
7. N is the number of nodes in the network.
8. Runtime is the same input parameter used for GEMF SIM function.
9. timstp The Post NodesState function uses the input parameter timstp to produce a sequence of

time-points, Tr, from t=0 to t=Runtime with the step-size equals to timstp. The function task is to
retrieve the state of each node at the time instants specified by the elements of Tr.

Output Argument The output of Post NodesState function is a list that contains the numeric vector
Tr and the nodstt matrix. lst2=list(Tr,nodStt).

1. Tr is a sequence of time-points, from t=0 to t=Runtime with the step-size equals to the input
parameter timstp. The Post NodesState function retrieves the states of each node at the time instants
specified by the elements of Tr.

2. nodStt is a matrix that has t×N dimensions. Here t is the length of the output argumentTr and
N is the number of nodes. Nodstt[i,j] is the state of node j at the time point Tr[i]. Considering
the algorithm used by GEMF SIM function for the realization of the spreading process[cite paper],
every time an event happens one of the nodes in the network changes its state. Assuming T[j] is
the time when the jth event happens, the node states in the time interval [T[j], T[j + 1]) does not
change1. Hence the states of nodes at Tr[i] is the same as the states of nodes in the time interval
[T [j], T [j + 1]) as long as Tr[i] rests in the interval. If some of the time points in the sequence Tr
are greater than the time,Tf 2, that last event happens, the state of nodes will be assigned as the
same states that they had at Tf.

• GEMF SIM Prob

lst4=GEMF SIM Prob(Para,Net,X0,maxNumevent,Runtime,N,numrun,timstp,comp,
drawfromprobdis,P0)
Using this function we can perform the Monte Carlo simulation of the stochastic spreading models over the
network in order to obtain an estimation for the probability that a node occupies a specific compartment
at different time instants. This function generates several realizations of the epidemic process and counts
the occasions that a node occupies a compartment at a certain time point.

Input Arguments

1. Para
2. Net
3. X0
4. maxNumevent
5. Runtime

1T is the output argument of the Post Population function
2Tf is the output of GEMF SIM function

3



6. N
The parameters Para,Net,X0,maxNumevent,Runtime,N are the same input parameters defined for
the GEMF SIM function.

7. numrun is the number of the process’s realizations that will be generated.
8. timstp is a numeric value that will be used as the step-size to produce a sequence of time-points,

Tp, from t=0 to t=Runtime. The function counts the occasions that a node occupies a compartment
at a certain time point specified by the elements of Tp.

9. comp is a numeric vector with the node states as its elements. For example if we want the function
count the number of times that a node assumes node states i and j ,comp should be a vector with i
and j as its elements, comp = c(i, j).

10. drawfromprobdis is a Boolean value. If we set the input parameter drawfromprobdis=TRUE, the
function starts each realization of the stochastic process with a different initial condition. In this
case the input parameter X0 will not be used.

11. P0 is M×N matrix of numeric values where M is the number of compartments and N is the number
of the nodes. If the input drawfromprobdis is set to TRUE, the function interprets the nth column of
the input P0 as the probability distribution of initially finding node n in different states. Hence, in
order to assign the node n an initial state the function draws a state using the probability distribution
defined by the nth columns of P0 or P0[,n]

Output Argument The output of GEMF SIM Prob function is a list that contains a numeric vector,
Tp, and a numeric three dimensional array ,compcu. lst4=list(Tp,compcu).

1. Tp is a sequence of time-points, from t=0 to t=Runtime with the step-size equals to the input
parameter timstp. The function counts the occasions that a node occupies a compartment at a
certain time point specified by the elements of Tp.

2. compcu The function generates as many realizations of the spreading process as the value of the
input parameter numrun. The element compcu[i,n,j] stores the number of times among all the re-
alizations that the node n occupies the compartment comp[i]3 at the time instant Tp[j]. Hence the
probability of finding node n in comp[i] at the time instant Tp[j] can be estimated by the value of
compcu[i,n,j]/numrun.

• Net Import

Net=Net Import(File,N)
Generates the Net parameter for a single layer topology. Net is the input parameter of GEMF SIM func-
tion.

Input Arguments

1. File is the name of a text file that describes a single layer network.The network links can be directed
and weighted. The text file should have three columns where the elements in each row are tab
delimited. Each row represents a directed link from the first element in the row to the second
element and the weight of the link is the third element. If a link between the nodes i and j is
undirected, where the nodes on either side of the link can affect each other, two rows should be
included in the text file; One row for describing a link from node i to node j and another row for a
link from node j to node i. Hence The corresponding rows would be:
i j 1
j i 1
where the 1 in the third column is the weight of the link.

2. N is the number of nodes in the network.

Output Arguments

1. Net is a Net parameter with l=1. The Net parameter is described as one of the input arguments for
the GEMF SIM function.

3comp is the input parameter of GEMF SIM Prob function

4



• NetCmbn

Net=NetCmbn(NetSet,N)
This function combines the Net arguments of single-layer networks and generates the Net argument for
the multilayer network which can be used as the input argument for the GEMF SIM function.

Input Arguments

1. NetSet is a list containing the Net parameters of single-layer networks. For example if we have two
layers then NetSet=list(Net1,Net2) where Net1 and Net2 are the Net parameters of two single-layer
networks. Each single layer Net parameter can be generated using the Net Import function.

2. N is the number of nodes in the network.

Output Arguments

1. Net is the Net parameter for the multilayer network and can be used as the input argument for the
GEMF SIM function.

• Para SIS

Para=Para SIS(delta,beta)
The argument Para for a generic spreading model is described as one of the input arguments of GEMF SIM
function. The function Para SIS generates the argument Para for the SIS spreading model over a single-
layer network.

Input Arguments

1. delta
2. beta

Here delta and beta are the transition rates in the SIS model where each node is susceptible or
infected. In this model a susceptible node becomes infected with the rate beta if it has one infected
neighbor and an infected node becomes susceptible with the rate delta.

Output Arguments

1. Para is the specific Para argument for the SIS spreading model over a single-layer network.
Para=list(M,q,l,A d,A b), For the SIS spreading model over a single layer network we have

– number of node states M=2 (susceptible state is represented by the integer number 1 and the
infected state is represented by the integer number 2 )

– number of layers l=1
– influencer states q=

[
2
]

(because the network is single layer, q is 1×1 matrix with the integer
number 2 as the influencer state; 2 is representing the infected state)

– nodal based transition matrix A d =
[

0 0
delta 0

]
(the only nodal based transition in the

SIS model is the transition from the infected state (represented by 2 ) to the susceptible state
(represented by 1 ) with the rate delta).

– edge based transition array A b which has 2 × 2 × 1 (M × M × l) dimensions and

A b[:,:,1] =
[
0 beta
0 0

]
(the only edge based transition in the SIS model is the transition from

the susceptible state (represented by 1 ) to the infected state (represented by 2 ) with the rate
beta).

• Para SAIS 2layer

Para=Para SAIS 2layer(delta,beta,beta a,kappa,mu)
The argument Para for a generic spreading model is described as one of the input arguments of GEMF SIM
function. The function Para SAIS 2layer generates the argument Para for the SAIS spreading model over
a 2-layer network.

5



Input Arguments

1. delta
2. beta
3. beta a
4. kappa
5. mu

In the SAIS 2layer epidemic model each node is either susceptible or infected or alert. If a node
is infected it becomes susceptible with the rate delta. If a node is susceptible and through the first
layer of the network is connected to an infected node it becomes infected with the rate beta or it
becomes alert with rate kappa. Moreover, an alert node that has an infected neighbor in the first
layer becomes infected with the rate beta a. In addition to the mentioned transitions, If a node is
susceptible and has an infected neighbor in the second layer of the network, it becomes alert with the
rate mu.

Output Arguments

1. Para is the specific Para argument for the SAIS spreading model over a 2-layer network.
Para=list(M,q,l,A d,A b), For the SAIS 2layer spreading model we have

– number of node states M=3 (susceptible state is represented by the integer number 1, infected
state is represented by the integer number 2 and alert is represented by the integer number 3 )

– number of layers l=2
– influencer states q=

[
2 2

]
(because the network is 2-layer, q is 1×2 matrix with the integer

number 2 as the influencer state; 2 is representing the infected state)

– nodal based transition matrix A d =

 0 0 0
delta 0 0

0 0 0

 (the only nodal based transition in

the SAIS 2layer model is the transition from infected state to susceptible state (2→ 1) with the
rate delta).

– edge based transition array A b which has 3× 3× 2 (M ×M × l) dimensions.
For the rates of the transitions induced through the first layer of the network we have

A b[:,:,1] =

0 beta kappa
0 0 0
0 beta a 0

 , which corresponds to the edge based transitions a. From

susceptible state to infected state (1 → 2) with the rate beta b. From susceptible state to alert
state (1→ 3) with the rate kappa c. From alert state to the infected state (3→ 2) with the rate
beta a.
For the rates of the transitions induced through the second layer of the network we can write

A b[:,:,2] =

0 0 mu
0 0 0
0 0 0

 , which corresponds to the edge based transition from susceptible state

to alert state (1→ 3) with the rate mu.

• NetGen Geo

Net=NetGen Geo(N,r)
This function generates random geometric graph by distributing the nodes uniformly and independently
in the unit square and connecting any two nodes by a link if and only if their distance is smaller than a
certain value. The function outputs the Net parameter for the undirected geometric graph network.

Input Arguments

1. N is number of the nodes in the network.
2. r In the random geometric graph any pairs of nodes are connected if and only if the distance between

them is smaller than r.

Output Arguments

6



1. Net is the Net parameter for the undirected random geometric graph and it can be fed in to the
GEMF SIM function as a input argument.

• NetGen ER

Net=NetGen ER(N,p)
This function generates a variant Erdos-Renyi random graph where any pair of nodes in the network
have a fixed probability of being connected. The function outputs the Net parameter for the undirected
Erdos-Renyi graph.

Input Arguments

1. N is number of the nodes in the network.
2. p In the Erdos-Renyi random graph any pair of nodes in the graph are independently connected with

probability p.

Output Arguments

1. Net is the Net parameter for the undirected Erdos-Renyi random graph and it can be fed in to the
GEMF SIM function as a input argument.

Examples
• SIS epidemic over 1-layer network

In this example the goal is to generate one realization of the the SIS epidemic model over a single layer
network. Here we explain the code that we need to run in R:
first we start with loading some functions that we will use in the simulation
source(”NeighborhoodDataWD.R”);
source(”Net Import.R”);
source(”Para SIS.R”);
source(”Post Population.R”);
source(”GEMF SIM.R”)
the next step is to prepare the input arguments for the GEMF SIM function. The characteristics of the

input arguments and the functions are explained in the ”Description” section of the manual.
File=”edgewd.txt”; importing a Net from a file
N=379;
Net=Net Import(File,N);
Para=Para SIS(1,0.2); setting up an SIS epidemic model
x0=matrix(2,1,N); generating an initial condition where all the nodes are initially infected
maxNumevent=35000; values that specifies when the simulation terminates
Runtime=30;
now the input arguments are defined and we can run the GEMF SIM function
lst=GEMF SIM(Para,Net,x0,maxNumevent,Runtime,N);
ts=lst[[1]];
n index=lst[[2]];
i index=lst[[3]];
j index=lst[[4]];
Tf=lst[[5]];
lasteventnumber=lst[[6]];
using the Post Population function we can find the population of the compartments through time
M=Para[[1]];
lst2=Post Population(x0,M,N,ts,i index,j index,lasteventnumber);
T=lst2[[1]];
StateCount=lst2[[2]];
infectedpopulation=StateCount[2,];
susceptiblepopulation=StateCount[1,];
we can plot the population of the infected nodes or the susceptible nodes respect to time

7



0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

T

po
pu

la
tio

n 
of

 c
om

pa
rt

m
en

t

susceptible

infected

• SAIS epidemic model over 2-layer network
In this example we simulate the SAIS epidemic over a 2-layer network and estimate the probability distri-
bution of finding a node in different states as a function of time. For this simulation the initial states of
the nodes are chosen from a probability distribution and the network is randomly generated. In order to
run the simulation we execute GEMF SIM Prob function over several cores of the computer in parallel.
first we start with loading some functions that we will use in the simulation
source(”NeighborhoodDataWD.R”);
source(”NetCmbn.R”);
source(”Para SAIS 2layer.R”);
source(”GEMF SIM Prob.R”);
source(”NetGen Geo.R”);
source(”NetGen ER.R”);
the next step is to prepare the input arguments for the GEMF SIM Prob function. The characteristics of

the input arguments and the functions are explained in the ”Description” section of the manual.
N=300; generating a 2-layer random network with 300 nodes
Net1=NetGen Geo(N,0.1)
Net2=NetGen ER(N,0.03);
NetSet=list(Net1,Net2);
Net=NetCmbn(NetSet,N);
Para=Para SAIS 2layer(1,0.2,0.1,0,0.1); setting up an SAIS 2layer epidemic model
M=Para[[1]];
P0=matrix(0,M,N); generating an initial condition where for each node the probabilities of being
P0[1,]=0.25; susceptible, infected or alert, initially are 0.25, 0.5 and 0.25
P0[2,]=0.5;
P0[3,]=0.25;
maxNumevent=100000; values that specifies when the simulation terminates
Runtime=5;
numrun=25; each core of the computer will make 25 realization of the epidemic process
comp=c(1,2,3);
we can run GEMF SIM Prob function in parallel on several cores
library(parallel);
numcor=4; here we choose 4 cores to run the simulation
cl=makeCluster(numcor);

8



the cluster function makes the list ”result” that has the output of GEMF SIM Prob, from different cores,
as its elements
timstp=0.1;
result=clusterCall(cl, GEMF SIM Prob, Para,Net,X0=NA,maxNumevent,Runtime,N,numrun,timstp,comp,
drawfromprobdis=TRUE,P0);
stopCluster(cl);
we can incorporate the simulations from different cores
Tp=result[[1]][[1]];
compcu=result[[1]][[2]];
for (j in 2:numcor){compcu=compcu+result[[j]][[2]]};
s=numcor*numrun; total number of the realization for the epidemic process
comppr=compcu/s;
susceptible=colSums(comppr[1„])
infected=colSums(comppr[2„])
alert=colSums(comppr[3„])
we can plot the average number of the susceptible, infected or alert nodes respect to time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
40

60

80

100

120

140

160

180

200

T

av
er

ag
e 

po
pu

la
tio

n

susceptible

infected

alert

9


