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Abstract—The increasing complexity of System-on-Chip (SoC) designs

and the rise of third-party vendors in the semiconductor industry have led

to unprecedented security concerns. Traditional formal methods struggle

to address software-exploited hardware bugs, and existing solutions for

hardware-software co-verification often fall short. This paper presents

Microscope, a novel framework for inferring software instruction pat-

terns that can trigger hardware vulnerabilities in SoC designs. Mi-

croscope enhances the Structural Causal Model (SCM) with hardware

features, creating a scalable Hardware Structural Causal Model (HW-

SCM). A domain-specific language (DSL) in SMT-LIB represents the

HW-SCM and predefined security properties, with incremental SMT

solving deducing possible instructions. Microscope identifies causality to

determine whether a hardware threat could result from any software

events, providing a valuable resource for patching hardware bugs and

generating test input. Extensive experimentation demonstrates Micro-
scope’s capability to infer the causality of a wide range of vulnerabilities

and bugs located in SoC-level benchmarks.

Index Terms—Causality Inference, Hardware Security, Hardware and

Software Co-Verification

I. INTRODUCTION

System-on-chip (SoC) designers face unprecedented security con-

cerns due to the rise of third-party vendors in the semiconductor

industry [1]. As the complexity of SoC designs rises, securing a

computer system requires a thorough understanding of the full soft-

ware stack and the hardware architecture. SoC designers have been

overwhelmed with the workload of manually diagnosing security

vulnerabilities. Moreover, software-exploited hardware bugs present

rigorous challenges to traditional formal methods. The emergence of

transient execution attacks [2] has propelled the topic of software-

hardware co-verification into the limelight. However, existing work

falls short when it comes to bridging the gap between hardware and

software.

For example, Coppelia [3] generates software exploit for hardware

bug to help engineer contextualize the threat. This work migrates

hardware language to the software platform to address the co-

verification issue. Specifically, the hardware Register Transfer Level

(RT-level) design is firstly translated to C++ and then takes advantage

of KLEE [4] for symbolic execution. Based on the security-critical

assertion. The violation input sequence can be found for exploit

generation. However, the software-level descriptions of hardware

cannot precisely represent the behavior of the original RT-level

code. This abstraction can pose a challenge to accurately analyze

the structures within the produced C++ code. Moreover, micro-

architectural design can be verified as an RT-level design using open-

source EDA tools such as Yosys [5], commercial EDA tools like

Cadence JasperGold [6], and Synopsys VC Formal [7]. However,

these tools are not originally designed for hardware-software co-

verfication. While engineers can still use assertion-based verification

techniques to validate potential threats, doubts remain about uncov-

ering all interaction traces between software and hardware.

In response to these challenges, this paper presents Microscope,

an innovative framework designed to infer potential software in-

struction patterns that expose hardware vulnerabilities. Specifically,

we enhance the Structural Causal Model (SCM) [8] with hardware

features such as timing stamps, resulting in a scalable Hardware

Structural Causal Model (HW-SCM). A domain-specific language

(DSL) in SMT-LIB is developed to represent this HW-SCM along

with predefined security properties. Subsequently, incremental SMT

solving is applied to deduce all possible instructions that satisfy these

properties. The effectiveness of Microscope is validated in several

RISC-V SoC benchmarks. The primary contributions of this paper

are as follows.

• The proposed Microscope presents HW-SCM in a self-

developed DSL, which models a hardware-software system

from the hardware side. It effectively addresses scalability and

efficiency issues by eliminating the need to convert hardware to

software or low-level hardware description.

• Our approach identifies causality to determine whether a hard-

ware threat could result from any software events. If such a

relationship exists, the inferred instruction patterns can serve

as a valuable resource for both patching hardware bugs and

generating test input. Conversely, if no such relationship is

found, the hardware vulnerability can be deemed a non-critical

security threat, allowing for the conservation of resources.

• Through extensive experimentation, we demonstrate that Micro-

scope is capable of inferring the causality of a wide range of

vulnerabilities and bugs found in SoC-level benchmarks. In line

with this, we have developed a corresponding EDA tool that

will be made publicly available upon the paper’s acceptance.

II. BACKGROUND

A. Structural Causal Model

A Structural Causal Model (SCM) is a mathematical framework

used to describe the causal relationships between variables in a

system [8]. Two set, U and V , alongside a function set defined as

f = {fx : Wx → x|x ∈ V } (1)

where Wx = U ∪ V \ {x}. V is referred to as a set of endogenous

variables or variables within the SCM, and U is a set of exogenous

variables or variables external to the SCM. As such, Wx is the

union of all variables present in the design with the exception of x.

Every endogenous variable is a descendant of a subset of exogenous

variables as defined by fx, and ∀y ∈ Wx, y is a cause of x.

B. SMT Solving.

Satisfiability Modulo Theories (SMT) solving is a powerful ap-

proach for automated verification and constraint satisfaction in

software and hardware design, which supports a wide range of

theories, including quantifier-free bit-vector (QF-BV), linear integer

arithmetics (LIA), etc. Quantifier-Free Bit-Vector Logic (QF-BV)

supports reasoning about fixed-size bit-vectors and their operations

without the use of quantifiers such as Bit-wise Logical Operations,



Arithmetic Operations, etc. In this paper we use a subset of QF-BV

Operations to encode the verilog into HW-SCM format.

III. HARDWARE STRUCTURAL CAUSAL MODEL

This section delineates the HW-SCM as a multi-layer graph model

that facilitates causality inference at the hardware-software boundary.

We initiate this discourse by elucidating the concept of the HW-SCM

and its correlation with the traditional SCM and hardware design.

A. HW-SCM definition

HW-SCM extends the foundational concept of SCMs [8], applying

it to model software as a sequence of signals within the hardware

schematic. In this context, we assume that SWi represents the set of

instructions or input signals in Clock i, while HWi represents the

set of hardware signals (excluding the inputs) in Clock i (i ∈ N). To

characterize the HW-SCM, we define two sets of functions:

fcomb = {fi : Xi → yi | yi ∈ HWi}, (2)

fseq = {fi : Xi−1 → yi | yi ∈ HWi}, (3)

Here, Xi ⊆ (SWi ∪ HWi) \ {yi} represents a subset of signals,

excluding signal yi, from the combined set of software and hardware

signals. The set fcomb encompasses all combinational connections

within the design, while fseq encompasses all sequential logic such

that every cause of signal yi, denoted as xi−1, belongs to the clock

cycle i− 1.

Following the traditional SCM model, we consider instructions and

inputs to be exogenous variables as these are external stimulus to

the hardware, and signals internal to the hardware to be endogenous

variables since their state is a direct response to external stimulus.

B. HW-SCM Graph Example

To illustrate the HW-SCM multi-layer graph model, we present an

example as shown in Figure 1. The Verilog code is provided in Figure

1a, with its netlist representation given in Figure 1b. In this example,

the output signal d depends on both signals e and c. The signal c is

an I/O port, while signal e is updated by inputs a and b at the positive

edge of the clock signal (clk). The graph representation of SCM

in Figure 1c illustrates the signal dependencies within the design.

However, since SCM is not specifically designed for hardware, it may

fall short in accurately modeling certain hardware behaviors, such as

timing behavior. For instance, SCM is not capable of adequately

addressing delay propagation in sequential circuits.

Therefore, we develop the HW-SCM by introducing two function

sets: fcomb and fseq to fit the hardware domain-specific modeling.

These function sets define different types of edges in the graph model,

mapping hardware signal connections to the multi-layer structure

depicted in Figure 1d. HW-SCM is represented as a multi-layer graph,

where fcomb represents the connections within a layer, capturing

the combinational dependencies, and fseq represents the connections

across layers, capturing the sequential dependencies. Hence, the

hardware timing behavior can be identified through this multi-layer

graph representation. Each layer represents a hardware state space

within one clock cycle.

In Figure 1d, we present two layers: Clock i and Clock i-1. In the

Clock i layer, the output signal di depends on the value of signals

ci and ei at the same clock cycle, Clock i. The signal ei in the

Clock i layer is updated on the positive edge of the clock signal

(clk) based on the inputs ai−1 and bi−1 at the previous clock cycle,

Clock i-1. This means that the value of di at Clock i is determined

by the inputs ai−1 and bi−1 at the previous clock cycle, Clock i-

1, as well as the input ci at the current clock cycle, Clock i. The

hardware system within two consecutive time slots can be exemplified

using this two-layer HW-SCM. By extending the HW-SCM into an

N-layer model, we can capture the multi-clock cycle behavior of

the hardware system within consecutive time slots. Moreover, the

sequences of instructions from the software will be modeled as input

signals with consecutive timestamps in HW-SCM. This allows for

a more comprehensive representation and analysis of the hardware-

software system’s functionality and temporal dependencies.

IV. MICROSCOPE

Microscope uses the HW-SCM as its infrastructure to enable

automated hardware-software co-analysis. This section introduces

Microscope and elaborates on the details of its primary steps.

A. Microscope Overview

Figure 2 provides a diagram of the general operational procedure

of Microscope. The hardware RT-level designs are first translated

into HW-SCM. In this process, information-flow tracking (IFT) is

employed to traverse the abstract syntax tree (AST), which forms the

basis for generating a data-flow graph. HW-SCM is then constructed

based on this data-flow graph. We have designed a DSL specifically

intended for representing the HW-SCM in SMT-LIB. A heuristic

approach is adopted to design/obtain assertions using extant hardware

databases like CWE [9] and Bugzilla [3] as references. Simultane-

ously, it is necessary to determine the number of layers to restrict

the scale of the HW-SCM. This figure hinges on the number of

clock cycles the user intends to consider for the security assessment.

The HW-SCM model, assertions and the number of model layers are

represented utilizing the proposed DSL.

Microscope then performs causality inference using an SMT

Solver. This inference involves deriving solutions that begin with

the assertions at the bottom layer of the HW-SCM model. Solutions

consist of same-layer inputs as defined in Equation (2) and higher-

layer sequential inputs as defined in Equation (3). Consequently, the

inputs from each layer are accumulated and interpreted as instructions

patterns that can satisfy the assertion. This code pattern is then

documented and blocked in the SMT Solver. Microscope runs this

incremental solving process until all code patterns have been inferred.

Any returned code patterns can be utilized to generate large-scale test

patterns for the design to further explore potential vulnerabilities, as

well as to fix hardware bugs.

B. Domain-Specific Language for HW-SCM

In the process of converting Verilog source code into HW-SCM

SMT representation, several steps need to be followed. Firstly, all

variables and parameters present in the source code are identified

and treated as bit-vectors. Next, Verilog operators and bit-vector

manipulations are mapped to their corresponding counterparts in

QF-BV, ensuring the proper translation of operations. Lastly, con-

trol structures such as if-else statements and case statements are

transformed into SMT conditional expressions, allowing for logical

reasoning and analysis within the Microscope framework.

1) Modeling Sequential Logic: Each signal is assigned a times-

tamp indicating the clock cycle during which its operation occurs.

In HW-SCM, the same hardware signal, when marked with different

timestamp values, is treated as distinct symbols. This is demonstrated

with timestamps in Figure 3a. ctr register is updated every clock

cycle, depending on the state of the rst. The proposed DSL applies

timestamps by adding the #-n suffix to signals, where n corresponds

to a specific clock cycle.

2) Handling Dynamic Indexing Operations: Hardware description

languages generally support bit-selects and part-selects. A bit-select

operation occurs when an index from an array of wire or reg

is selected, while a part-select operation happens when multiple

consecutive indices are chosen. The proposed DSL introduces an

equivalent control structure wherein an If condition coupled with



module top (

input a, b, c,

input clk, rst,

output d);

reg e;

assign d = e & c;

always @(posedge clk

or posedge rst)

if(rst) e <= 1’b0;

else e <= a + b;

endmodule

(a) Verilog example.
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Fig. 1: Graph based HW-SCM
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Fig. 2: Working procedure of the proposed Microscope framework

Counter circuit

SCM representation

module counter(
input wire clk, rst,
output reg [7:0] ctr);

always @posedge(clk)

if(rst) ctr <= 8’b0;
else ctr = ctr + 8’b1;

endmodule
counter.ctr#0 <->
If(1 == counter.rst#-1,
0,

counter.ctr#-1 + 1)

counter.ctr#-1 <->
If(1 == counter.rst#-2),
0,

counter.ctr#-2 + 1)

counter.ctr#-2 <->
...

(a) Multicycle sequential circuits.

ROM Implementation

SCM representation

module rom_table(

input wire [1:0] addr,
output wire [3:0] data);
reg [3:0] store [0:3];

initial
$readmemb("datatable.vhi",

store);

assign data = store[select];

endmodule
rom_table.data#0 <->
If(0 == rom_table.addr#0,

rom_table.store_index_0#0,
If(1 == rom_table.addr#0,

rom_table.store_index_1#0,
...

rom_table.store_index_0#0 <->
file_read_value_0
rom_table.store_index_1#0 <->
file_read_value_1
...

(b) Resolution of 2D array indexing.

implicit

SCM representation

always @(posedge clk)

if(rst)
result <= 1’b0;

else if(control)
result <= 1’b1;

implicit.result#0 <->
If(implicit.rst#-1 == 1,
0,

If(implicit.control#-1 == 1,
1,

implicit.result#-1))

(c) Implicit else transformation.

2-1 multiplexer

SCM representation

module mux(
input [1:0] ins,
input select,
output mux_out);

assign mux_out = ins[select];

endmodule
mux.mux_out#0 <->

If(0 == mux.select#0,

Extract(0, 0, mux.ins#0),
Extract(1, 1, mux.ins#0))

(d) Dynamic indexing transforma-

tion.

Fig. 3: Domain Specific Language

statically indexed Extract constructs are used to obtain the neces-

sary indices from the array. This construct is extended for all possible

indexing values. An example is demonstrated through a simple 2-1

line multiplexer that uses a bit-select operation to set the output, is

shown in Figure 3d.

3) Handling Implicit Control Structures: When encountering a

case statement or an if–else statement that does not specify default

behavior in a sequential block, the DSL assumes it to retain the

value from the previous clock cycle. As depicted in Figure 3c, an

implicit else statement is added to uphold consistency in modeling

the behavior of the circuit within its HW-SCM.

4) Handling 2D Array Selection and Initialization Constructs:

The proposed DSL flattened the array into individual elements and

used a series of nested If statements to represent the indexing

operation. Initialization constructs, such as initial procedural

blocks and externally imported data, are parsed to basic assignment

operations in the proposed DSL. The example is showcased in Figure

3b, where a ROM table is inferred and initialized with data from an

external file. The resulting conversion breaks down the store array

into individual elements and assigned to the output based on the

value of addr. Moreover, individual entries are initialized by reading

and parsing the contents of the file specified by the $readmemb()

function.

C. Assertion Development

Microscope utilizes both the HW-SCM (in DSL) and user-specified

security assertions (expressed as DSL assertions) to perform causality

inference. Microscope users construct assertions using the CWE

database for guidance on classes of vulnerabilities that may apply

to their design. This is standard practice in design verification as

illustrated in [3], [6], [7], [10]. Before constructing the HW-SCM,

users are required to specify the time window size, denoted as n,

which also reduces scalability issues. Based on the specification,

the Microscope will generate an HW-SCM model consisting of

n + 1 layers for verification purposes. This implies that the given

assertion will be evaluated within a time span of n+ 1 consecutive

clock cycles. Each signal is replicated n + 1 times with a extended

numerical index. For instance, if the original signal is named signal

the HW-SCM signals will be named signal#0 (current clock

cycle), signal#-1 (previous clock cycle) up to signal#-n (n

clock cycles ago) representing the signal value from historical state.

Leveraging these annotations, we are able to convert SystemVerilog

Assertions (SVA) or Property Specification Language (PSL) into

our Domain-Specific Language (DSL) assertions, thereby effectively

covering both combinational and sequential assertions.

The SMT solver returns either a SAT or UNSAT result based on

the given assertions and HW-SCM. Note: the instruction input signal

is also replicated n+ 1 times for recording historical inputs, which

are endogenous variables in the HW-SCM. Therefore, if the solver

returns SAT, it means that the given DSL assertion and HW-SCM

model allow for a valid stimulus to the system. In other words,

there exists a value assignment to the software instructions (causality

reason) that can trigger the root of hardware security threats (causality

result). Following this, Microscope will employ incremental solving

to identify all malicious instruction sequences that could activate the

hardware vulnerability.

V. EXPERIMENTAL RESULTS

A. Experiment Settings

A series of System-on-Chip (SoC) level evaluations with two

distinct Instruction Set Architecture (ISA) SoCs - RISC-V and

OpenRISC are performed in this work. Specifically, we selected

the DarkRISCV [14], RISC-V mini [15], and OpenRISC 1200 [16]

processors as the test bench. The vulnerabilities we used for testing

are derived from the work [17] and the commit history from OR1200.

The results of these experiments are summarized in Table II. Our

testing environment consisted of a machine running Ubuntu 20.04,



Threat Vulnerability Description Verilog code Example

CWE-1262 [11],
Mail#00007(OR1200) [3]

Improper Access Control for Register Interface. The value
of the register is not protected, and security-related hardware
data could be tampered with through the register interface.
Specifically, the write operation targeting the register inter-
face is not adequately validated.

if (write_en)

regfiles[sensitive_index] <= write_data;

CWE-1234 [12] Hardware Internal or Debug Modes Allow Override of

Locks. A trusted lock bit, when enabled, can block the write
operation to a set of registers or address regions. However,
debug mode can bypass the lock mode and modify the
locked device configuration, i.e., an external debug signal
can override the original lock signal.

input debug;

/* ... */

if (en || debug)

peripheral_register <= data;

CWE-1245 [13] Improper Finite State Machines (FSMs) in Hardware

Logic. A specific input signal or signal sequence may cause
the finite state machine (FSM) in the hardware logic to enter
an undefined state, potentially resulting in a denial of service
attack or privilege escalation.

case (opcode)

7’b0000011: /* incomplete load */

7’b1101111: /* ... */

7’b0010111: /* ... */

default: /* ... */

endcase

Bugzilla #51,
Bugzilla #76 [3]

Comparison wrong for unsigned inequality with differ-

ent MSB. ALU module yeild incorrect result for unsigned
comparation .

assign a_lt_b = comp_op[3] ?

((a[width-1] & !b[width-1]) | (!a[width-1]

& !b[width-1] & result_sum[width-1])

|(a[width-1] & b[width-1]

& result_sum[width-1])):result_sum[width-1];

Bugzilla #90 [3] EPCR on range exception is incorrect. Exception program
counter register doesn’t reset to the address of jump instruc-
tion before the instruction that caused exception.

else if (except_trig[13:3] == 11’b1 ) begin

except_type <= ‘OR1200_EXCEPT_RANGE;

epcr <= ex_dslot ?

wb_pc : delayed1_ex_dslot ?

id_pc : delayed2_ex_dslot ?

id_pc : id_pc;

dsx <= ex_dslot; end

Bugzilla #88 [3] l.extw instructions behave incorrectly No need to explicitly
apply an extend operation when using the l.extw instruction.

case (alu_op)

5’b0_1101:

result = extended;

Bugzilla #97 [3] Ignore an exception that it should handle. When encoun-
tering an unsupported instruction, the control unit should
recognize this condition and handle it appropriately, typically
by generating an exception or interrupt.

case (id_insn[31:26])

6’b101110:

except_illegal <= 1’b0;

TABLE I: Vulnerabilities description and code example

equipped with an i9-12900K processor and 32GB of memory. Z3 [18]

is applied as the SMT solver in this experiment.

B. Threat Model and Heuristic Assertions Development

Our framework serves as a valuable tool for verification engineers

in finding causality between RT-level vulnerabilities within RT-level

designs and software-level instructions. It offers a static method

that validates the presence of these vulnerabilities by inferring their

input patterns. These input patterns can consist of either compiled

or assembled instructions for a processor in the SoC. The exper-

iment demonstrates the Microscope by encompassing three CWE

vulnerabilities and five types of design flaws extracted from the

OR1200 commit history. In Table I, we provide a comprehensive

overview of these vulnerabilities, including the associated suspicious

code patterns within the design that expose them, accompanied by

concise descriptions for clarity.

Specifically, CWE-1262 represents an improper access control

vulnerability related to a register interface, CWE-1234 relates to

hardware internal or debug modes that allow for overriding locks,

CWE-1245 pertains to the presence of improper finite state ma-

chines in hardware logic. Additionally, Bugzilla #51 and Bugzilla

#76 highlight flaws in the ALU design, Bugzilla #90 demonstrates

incorrect exception handling, and Bugzilla #88 and Bugzilla #97

exemplify incorrect implementations of instructions. The developed

vulnerability assertions used in Microscope are listed in the last

column of Table II and explained in the following paragraphs.

1) Bugzilla #51, #76: Two design flaws were identified in the

ALU module of OR1200 when performing unsigned comparisons.

The problem originates from the incorrect configuration of the

a_lt_b flag, leading to erroneous computation outcomes. To iden-

tify the trigger pattern, the assertion specifies the erroneous behavior

where the operand a is greater than b while the a_lt_b flag is still

set. Microscope traces back the input signal icpu_dat_i#i(32 bit

instruction) to identify the root cause.

2) Bugzilla #90: In the OR1200 processor, when handling a range

exception, the exception program counter register (epcr) is reset to

the jump instruction that was executed prior to the exception. The

specific program counter value to be used for the reset is stored

in either dl_pc, id_pc, or ex_pc, depending on the delay slot

where the exception-causing instruction is located. We track the

trigger pattern where the epcr is incorrectly set during an exception

occurring in the second delay slot,

3) Bugzilla #88: When the value of alu_op is set to 13 (EXTW),

the ALU output is incorrectly updated due to the assignment of

the wrong operand. We track the trigger pattern that leads to these

incorrect updates of the ALU output.

4) Bugzilla #97: OR1200 will not throw an exception when

l.ror is not implemented. For specified ISA, we track whether

one missing instruction can raise the exception.

5) CWE-1234: We implement CWE-1234 by altering the con-

trol signal of the AES256 peripheral register. The malicious code

snippet can be found in the last column of Table I. The peripheral

register value can be updated when the signal io_dmem_wen is

set or debug mode is turned on. The trigger condition is either

io_dmem_wen == 1 or debug == 1. We build the HW-SCM based



Benchmark Vulnerability Language Cell Number Layers Time Inference DSL Property

DarkRISC-V CWE-1262 Verilog 8,890 3 1.73 s ✓ reg_wb_addr#0 == 0

RISCV-mini CWE-1262 CHISEL 17,108 3 8.16 s ✓ reg_rf_wen#0 == 1

DarkRISC-V CWE-1234 Verilog 8,828 3 2.94 s ✓ (io_dmem_wen#0 || debug#0) ==1

RISCV-mini CWE-1234 CHISEL 17,000 3 24.38 s ✓

DarkRISC-V CWE-1245 Verilog 8,971 3 1.45 s ✓ req_valid#0== 1

RISCV-mini CWE-1245 CHISEL 16,927 3 11.36 s ✓

OR1200 Bugzilla #51 Verilog 20,668 6 23.91 s ✓ a_lt_b#0==1,comp_op#0[3]==0, a#0>b#0

OR1200 Bugzilla #76 Verilog 20,714 6 24.03 s ✓

OR1200 Bugzilla #88 Verilog 20,901 6 23.80 s ✓ result#0==extended#0, alu_op#0==13

OR1200 Bugzilla #90 Verilog 20,743 6 18.44 s ✓ except_trig#-1[13:3] == 1,

ex_dslot#-1 == 0,

delayed1_ex_dslot#-1 == 1,

epcr#0 == id_pc#0

OR1200 Bugzilla #97 Verilog 20,945 6 18.42 s ✓ id_insn[31:26]#-1== 46, ex_freeze#-1==0,

id_freeze#-1==0, ex_flushpipe#-1==0,

except_illegal#0==0

TABLE II: Experiment Result

on the constraint (io_dmem_wen#0 || debug#0) ==1. and restrict

the time window to 3 in order to backtrack the input pattern that can

trigger this assertion.

6) CWE-1262: Zero Register is considered a read-only reg-

ister and cannot be written to in a processor. However,

the vulnerability CWE-1262(Mail#00007(OR1200)) applies write

permission to the Zero Register, altering its intended be-

havior. Referring to the Table I, we build the constraint

reg_wb_addr#0 == 0 && reg_rf_wen#0 == 1 to backtrack the

input pattern

7) CWE-1245: An undefined state opcode=7’0000011 is in-

tentionally inserted in the processor decoder as shown in Table I.

Microscope utilizes the constraint req_valid#0 == 1’b1 to track

the opcode pattern that enable the signal.

C. Results and Analysis

CWE and Bugzilla vulnerabilities described in Table I are utilized

to design security assertions in SoC-level benchmarks. We use

Microscope to infer instruction patterns in three SoC platforms –

RISCV-mini, DarkRISC-V, and OR1200. Microscope support various

hardware languages, including Verilog and Chisel. The scalability of

the benchmarks is evaluated based on the number of CMOS gates

(NAND/NOR) in the column of Cell Number. Layers represents

the number of clock cycles considered in the verification to resolve

the assertion. Time of Microscope measures the total running time,

including both HW-SCM building and Z3 solving.

1) Causality Inference in OR1200: Taking Bugzilla #51 and

Bugzilla #76 as examples, one of the inference results are shown in

Listing 1. It reveals four instructions from SoC instruction memory

input icpu_dat_i that can trigger the vulnerability assertion.

These instructions can incorrectly set the a_lt_b flag.

1 icpu_dat_i:

2 l.sfgtu rA,rB //11100100010...

3 //or

4 l.sfgeu rA,rB //11100100011...

5 //or

6 l.sfltu rA,rB //11100100100...

7 //or

8 l.sfleu rA,rB //11100100101...

Listing 1: The Result Input Pattern about Bugzilla 51 from HW-SCM.

2) Causality Inference in DarkRISC-V and RISCV-mini: For

CWE-1234, our findings indicate that any opcode pattern can trigger

this bug, meaning there are no restrictions on the input instruction.

This aligns with our expectation as the signal debug can override

the io_dmem_wen signal, allowing the user to access the register

interface regardless of the input instruction. To confirm our findings,

we constructed another HW-SCM model that only relied on the prop-

erty io_dmem_wen#0 == 1. Typically, the signal io_dmem_wen is

used to monitor write access to storage devices in RISC-V cores. Our

HW-SCM further revealed that only an opcode equal to 0100011

can set the signal io_dmem_wen, which is the STORE opcode as

expected.

Approach (Avg)Time Replayable Traces generated

Coppelia [3] 252 s yes ≥ 1

JasperGold [6] 0.10 s no 1
Microscope 21.72 s yes ≥ 1

TABLE III: Comparison with existing work on or1200 testbench

VI. RELATED WORK

A comparison between Microscope and its related works is elabo-

rated to highlight the advantages and novelty of the proposed method

in this section.

A. Comparison with Existing Works

We present a comparison of our work with the commercial tool,

JasperGold FPV [6], and the publicly available Coppelia [3], as

depicted in Table III. “Average Time” is calculated based on six

Bugzilla test cases. “Replayable” refers to whether the generated

traces can be restarted from the hardware reset state, which decides

if consecutive instructions can be obtained. “Traces Generated”

denotes the number of triggered traces produced given a certain

assertion. The detailed definitions of “Replayable” and “Traces

Generated” can also be found at [3]. Since Coppelia doesn’t release

detailed configuration for every test case, we use the best average

time cost claims from the original paper. The JasperGold time cost

is calculated by using JasperGold FPV run cover property counterex-

ample generation time. With optimizations applied, Coppelia requires

minutes to generate the exploit, whereas our method accomplishes

in less than a minute. The improvement can be attributed to the fact

that Microscope eliminates the need to convert Verilog designs into



C++ representations,i.e., the constructed HW-SCM is directly built

on the original design with precise timing information. Additionally,

Coppelia cannot directly apply sequential assertions for generating

software exploits. If the user wants to specify expected behavior over

multiple clock cycles, they would have to manually insert extra flip-

flops into the design and log the signal value from the previous clock

cycles. Microscope can directly annotate signals from different layers

of the HW-SCM to describe the sequential assertion since our model

adds different timestamps for each signal.

In the domain of hardware-software boundary causal inference,

there currently exists no dedicated commercial tool. However, some

applications offer partial support for this functionality, albeit with a

significant manual workload. Cadence JasperGold FPV, a cornerstone

of the JasperGold Apps framework, can generate a counterexample

for a user-defined assertion. Notably, JasperGold can utilize the cover

property to infer input patterns and responds more swiftly than other

tools. Nevertheless, a limitation is that only one counterexample is

provided in each verification pass. To address all potential software-

exploited bugs, a verification engineer must repeatedly execute the

checking procedure until no counter traces are reported. This it-

erative process is both tedious and time-consuming. Furthermore,

when the same baseline constraint is input into both JasperGold

FPV and Microscope, there are instances where the exploits gen-

erated by JasperGold are not replayable. Specifically, the generated

counterexample trace might commence from an intermediate state

rather than the initial reset state. This is particularly evident for

vulnerabilities activated by state transitions, i.e., those requiring a

specific continuous input sequence to trigger the payload.

B. Relationship between Information Flow Tracking and Microscope

IFT-based approaches have been well developed to detect bugs in

purely hardware RTL design [19]. When applied to the analysis of a

hardware system, IFT aims to protect confidentiality and integrity

by detecting sneaky paths of sensitive information leakage and

modification. Causality inference is the process where causes are

inferred from data. In the security area, it determines whether a

security event is causally dependent on a preceding trigger event.

The relationship between IFT and causality inference in terms of

analyzing cyber attacks is first presented in [20] and elaborated in

[21].

While IFT helps identify where a security breach may have

occurred by monitoring data’s movement, causality inference can

provide the ”how” and ”why”—how the breach happened and why

it occurred in that particular way. We, therefore, consider IFT as

a fundamental infrastructure upon which we base our causality

analysis. Specifically, IFT helps generate data-flow graph in Micro-

scope. In this procedure, IFT identifies which signals are related

to each other. This can potentially allow the SMT solver to more

effectively partition the problem or apply heuristics, which could

improve efficiency. However, it’s important to note that even without

using IFT as the infrastructure, the HW-SCM can still be obtained

by directly parsing from RT-level (i.e., Verilog) codes. The trade-off,

however, is that the time cost of SMT solving will be increased.

VII. CONCLUSION AND FUTURE WORK

This paper introduces the HW-SCM to apply the causality infer-

ence to RT-level hardware and software security co-verification. The

proposed Microscope framework is developed to heuristically identify

bug structures, and then automatically infer the potential malicious

input instruction sequences that can trigger these bugs. Microscope

is thoroughly validated using SoC-level platforms. In the future, we

plan to collect open-source SoC platforms and insert CWE bugs so

that more experiments can be carried out.
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