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Abstract

Large Language Models (LLMs) demonstrate impressive ca-
pabilities across many applications but remain vulnerable to
jailbreak attacks, which elicit harmful or unintended content.
While model fine-tuning is an option for safety alignment, it
is costly and prone to catastrophic forgetting. Prompt opti-
mization has emerged as a promising alternative, yet existing
prompt-based defenses typically rely on static modifications
(e.g., fixed prefixes or suffixes) that cannot adapt to diverse
and evolving attacks.

We propose Dynamic Deep Prompt Optimization (DDPO),
the first jailbreak defense based on deep prompt optimiza-
tion. DDPO uses the target LLM’s own intermediate layers as
feature extractors to dynamically generate defensive embed-
dings via a lightweight multilayer perceptron. These tailored
embeddings are then injected into a subsequent intermediate
layer, enabling an input-dependent defense without modify-
ing the LLM’s weights. This design ensures high adaptability
with minimal computational overhead.

Experiments on a diverse set of models and attacks demon-
strate that DDPO significantly outperforms static prompt op-
timization methods, particularly on weakly aligned models
and when handling semantically ambiguous benign prompts,
successfully distinguishing them from genuinely harmful re-
quests.

Introduction

Large Language Models (LLMs) have revolutionized natu-
ral language processing, excelling in tasks such as question
answering and code completion. However, the broad deploy-
ment of LLMs has highlighted significant security vulnera-
bilities, notably their susceptibility to jailbreak” attacks (Yi
et al. 2024). These attacks use meticulously crafted adver-
sarial prompts to induce LLMs to generate malicious re-
sponses, thereby circumventing their designed usage poli-
cies and safety alignments. Such attacks can lead to severe
consequences, including the dissemination of misinforma-
tion or privacy breaches (Chu et al. 2024; Xu et al. 2024b).
Existing defenses against jailbreak attacks fall into two
main categories: model-level modifications (e.g., safety fine-
tuning (SFT) (Dong et al. 2023), reinforcement learning
from human feedback (RLHF) (Ouyang et al. 2022)) and
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prompt-level defenses (Yi et al. 2024). The latter are often
preferred because they are lightweight and avoid the high
costs of model retraining (Yi et al. 2024), as well as risks
like catastrophic forgetting that arise from modifying model
weights (Luo et al. 2023; Bianchi et al. 2023).

A promising prompt-level strategy is prompt optimiza-
tion, which augments user inputs with engineered tokens or
embeddings to steer model behavior. Unlike defenses based
on prompt filtering, prompt optimization offers enhanced
protection and lower false-positive rates (Jain et al. 2023;
Mo et al. 2024). However, current prompt optimization de-
fenses typically rely on inserting fixed (static) prefixes or
suffixes (Mo et al. 2024; Zhou, Li, and Wang 2024; Zheng
et al. 2024). This static nature limits the defense’s ability to
adapt to the nuances of diverse user inputs. As our experi-
ments show, this shortcoming leads to failure in truly chal-
lenging cases.

A Naive Dynamic Approach: A seemingly straightfor-
ward solution would be to employ an auxiliary LLM (e.g., a
fine-tuned GPT-2) to generate dynamic prefixes or suffixes.
However, this approach, while promising a degree of adapt-
ability, is far from ideal. It would introduce latency by re-
quiring the input to be processed twice: once by the auxil-
iary model and once by the target LLM. Furthermore, this
design presents a difficult trade-off. A small auxiliary model
would be necessary to avoid large computational overhead,
but its limited capacity would hinder its ability to understand
semantically complex inputs, leading to misguided defenses.

To address these challenges, this paper proposes a novel
and efficient approach: Dynamic Deep Prompt Optimiza-
tion (DDPO). Instead of relying on massive external mod-
els, DDPO leverages the target LLM’s own architecture. The
core idea is to use one of the LLM’s intermediate layers as
a feature extractor for the incoming user prompt. This ex-
tracted representation is then fed into a small, lightweight
neural network, which dynamically generates a defensive
embedding tailored to the specific input. This embedding is
then injected back into the input of a subsequent deep layer
of the LLM, effectively modulating the model’s processing
flow. This targeted intervention steers the model toward safe
responses for harmful queries while preserving utility for be-
nign ones. Crucially, the entire process occurs without mod-
ifying the weights of the target LLM.

The concept of “deep prompt tuning”, where tunable
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Figure 1: Prompt tuning strategies against jailbreak attacks (none update the target LLM’s weights). Attack tokens are in red and
defensive tokens/embeddings in green. Existing methods use static hard or soft prompts. A naive dynamic approach requires
a large auxiliary LLM and double input processing. DDPO instead uses the target LLM’s early-layer features and injects
dynamically generated defensive embeddings (via a two-layer MLP, negligible compared to the LLM size) into the inputs of

later layers, adding minimal overhead.

prompt embeddings influence intermediate layers, has been
previously studied (e.g., P-Tuning v2 (Liu et al. 2021)).
However, DDPO distinguishes itself significantly: to the best
of our knowledge, it is the first to adapt such a mechanism
for jailbreak defense. Moreover, unlike static methods like
P-Tuning v2 that learn fixed prompt embeddings, DDPO
generates a dynamic defensive embedding tailored to each
input. This latter distinction is crucial. Our method’s core
concept is not simply the choice of a deeper injection layer,
but the strategy of leveraging the LLM’s own semantic ca-
pabilities, an advantage that other deep prompt optimization
methods ignore.
Our contributions are as follows:

* We introduce DDPO, the first jailbreak defense to
use deep prompt optimization and the first prompt-
optimization-based defense to dynamically generate de-
fensive embeddings for insertion.

* Our method dynamically generates defensive embed-
dings by leveraging the target LLM’s own early layers as
a feature extractor. Inserting these embeddings directly
into the inputs of subsequent layers eliminates the high
overhead of large auxiliary models or a second process-
ing pass.

* We demonstrate through experiments that DDPO signifi-
cantly outperforms existing baselines, especially in chal-
lenging cases like defending weakly aligned models or
handling ambiguous benign prompts.

» We release our code for reproducibility.!
These characteristics position DDPO as a more efficient al-
ternative to existing prompt optimization defenses and a

'Code available at https://github.com/doniobidov/ddpo

more lightweight yet flexible alternative to full model fine-
tuning.

Related Work
Jailbreak Attacks

Jailbreak attacks aim to bypass the safety alignments of
LLMs, compelling them to generate content that violates us-
age policies or ethical guidelines. These attacks are broadly
categorized based on the attacker’s knowledge of the target
model: white-box attacks, which assume access to model pa-
rameters and gradients, and black-box attacks, which inter-
act with the model only through its input/output interface (Yi
et al. 2024).

Black-box attacks often originate from manual, human-
crafted prompts that rely on creativity and social engineering
principles like role-playing (e.g., the "Do Anything Now”
prompts) to deceive the model (Shen et al. 2024). While
innovative, these manual methods are often brittle and re-
quire significant human effort. To overcome this, recent re-
search has focused on automating the generation of black-
box attacks. A prominent approach is LLM-based gener-
ation, where an auxiliary LLM acts as an automated at-
tacker. For instance, Prompt Automatic Iterative Refinement
(PAIR) uses an attacker LLM to iteratively query a target
model and refine a candidate jailbreak prompt based on the
target’s responses, creating a query-efficient and adaptive at-
tack (Chao et al. 2025). Other black-box techniques include
prompt rewriting, which obfuscates harmful intent using ci-
phers (Yuan et al. 2023) or low-resource languages (Deng
et al. 2023), and template completion, which embeds mali-
cious requests within seemingly benign scenarios (Li et al.
2023).

White-box attacks leverage internal model information,



typically gradients, to optimize adversarial inputs. A key
challenge in this domain is optimizing over the discrete
space of text tokens. Early work on Universal Adversarial
Triggers (UAT) used a gradient-guided search to find short,
input-agnostic token sequences that trigger specific model
behaviors (Wallace et al. 2019). Building on this, Auto-
Prompt introduced one of the first frameworks for discrete
prompt optimization, using a greedy, gradient-guided search
to iteratively replace “trigger” tokens in a template (Shin
et al. 2020). However, its search was limited, as it evaluated
candidate token swaps for only one position at a time.

More advanced methods have significantly improved the
efficacy of gradient-based optimization. The Greedy Coordi-
nate Gradient (GCG) attack substantially increased success
rates by using gradients to identify promising token replace-
ments across all positions in an adversarial suffix simul-
taneously, and then greedily selecting the best substitution
from a batch of candidates (Zou et al. 2023). This approach
was extended to GCG-M (GCG-Multi) to optimize a single
suffix against multiple prompts and models, enhancing its
universality and transferability. Other techniques have ad-
dressed the discrete optimization challenge differently. The
Gradient-based Distributional Attack (GBDA) searches for
a distribution of adversarial examples, using the Gumbel-
softmax trick to enable gradient-based optimization over a
continuous parameterization (Guo et al. 2021). Similarly,
PEZ (Hard Prompts Made Easy) maintains continuous (soft)
embeddings during optimization but projects them to the
nearest discrete tokens for the forward pass, using the result-
ing gradient to update the continuous representation (Wen
et al. 2023).

Jailbreak Defenses

Defenses against jailbreak attacks are correspondingly di-
verse and are generally classified as model-level or prompt-
level defenses (Yi et al. 2024).

Model-level defenses involve modifying the LLM’s pa-
rameters or training process. Supervised Fine-Tuning (SFT)
with safety-focused datasets (Bianchi et al. 2023) and
Reinforcement Learning from Human Feedback (RLHF)
(Ouyang et al. 2022) are common approaches to instill
safety. Other model-level techniques include gradient and
logit analysis for attack detection (Xie et al. 2024; Xu et al.
2024a), response refinement (Kim, Yuk, and Cho 2024), and
proxy defenses using a separate, secure LLM (Zeng et al.
2024). While potentially robust, model-level defenses can
be resource-intensive to train and maintain. Furthermore,
fine-tuning approaches may suffer from “catastrophic for-
getting”, where the model loses performance on general
tasks after safety alignment (Luo et al. 2023; Bianchi et al.
2023).

Prompt-level defenses offer a lightweight alternative
to model-level modifications, as they operate on the in-
put prompts without altering the LLM’s core parameters,
thereby avoiding expensive retraining. These include prompt
detection (e.g., perplexity filters (Jain et al. 2023)), prompt
perturbation (e.g., SmoothLLM (Robey et al. 2023)), and
system prompt safeguards (Zheng et al. 2024; Zou, Chen,
and Li 2024). Prompt optimization, the focus of our work,

falls under this category.

Prompt Optimization Defenses Prompt optimization for
jailbreak defense is an emerging area that focuses on aug-
menting user input with optimized textual strings or continu-
ous embeddings (soft prompts). Compared to input-filtering
defenses, prompt optimization typically achieves better per-
formance with lower false positive rates (Jain et al. 2023; Mo
et al. 2024; Zhou, Li, and Wang 2024; Zheng et al. 2024).

* Prompt Adversarial Tuning (PAT) (Mo et al. 2024)
trains a discrete defensive prefix (a sequence of opti-
mized tokens, akin to hard prompt tuning) attached to
user prompts. PAT uses an adversarial tuning process,
optimizing the prefix with both adversarial and benign
prompts to balance robustness and utility. The resulting
prefix is static once trained.

* Directed Representation Optimization (DRO) (Zheng
et al. 2024) optimizes continuous safety prompts (soft
prompts). DRO aims to move the internal representations
of user queries along or opposite a pre-estimated “re-
fusal direction” within the LLM’s low-dimensional rep-
resentation space, depending on the query’s harmfulness.
These optimized continuous embeddings are also static.

* Robust Prompt Optimization (RPO) (Zhou, Li, and
Wang 2024) introduces a minimax optimization objec-
tive to generate a robust defensive suffix using discrete
tokens (i.e., hard prompt tuning). Rather than relying on
predefined jailbreak attacks, it jointly optimizes both the
attack and the defensive suffix in alternating cycles. The
final suffix is static.

These methods represent significant advancements. How-
ever, they primarily result in defensive components (pre-
fixes, suffixes, or soft prompts) that are static post-training.
In the experiment section, we demonstrate that this limita-
tion leads to underperformance, particularly in insufficiently
aligned LLMs and in cases where user prompts are ambigu-
ous and appear harmful, even though they are actually be-
nign.

Methodology
Threat Model

Attacker’s Objective and Capabilities: The attacker’s pri-
mary goal is to circumvent the LLM’s safety alignments,
inducing the model to produce undesirable outputs such as
harmful content, misinformation, or any other responses that
violate usage policies. We consider an attacker capable of
crafting adversarial prompts by modifying any accessible
part of the user input. This attacker possesses knowledge of
the model architecture, including its weights, enabling them
to employ both white-box and black-box jailbreak strategies.
However, the attacker cannot directly modify the model’s
parameters or its training data.

Defender’s Capabilities: We assume the defender is the
model developer or deployer, who has white-box access to
the LLM (a reasonable assumption in real-world scenarios).
This access includes full knowledge of the model architec-
ture, its parameters (weights), and the ability to access its in-
ternal activations and processing flow during inference. The
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Figure 2: DDPO directly inserts a defensive embedding into
an intermediate LLM layer, generated by a lightweight MLP
using features from earlier layers. A masked placeholder
preserves positional embeddings during earlier processing.
The MLP is called once to produce the embedding, which is
reused for output generation, minimizing overhead.
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defender’s objective is to prevent the LLM from generating
harmful, unethical, or unintended content in response to ma-
licious user queries. Crucially, this defense must be achieved
while preserving the model’s utility and performance on be-
nign inputs.

Method Overview

DDPO begins by automatically identifying the optimal in-
termediate layer within the target LLM. This layer is chosen
for its ability to effectively distinguish between benign and
harmful user inputs. During operation, DDPO extracts the
hidden state representation corresponding to the last token
of the input prompt from this selected layer. This represen-
tation is then processed by a small, lightweight Multi-Layer
Perceptron (MLP).

The MLP, in turn, generates a single defensive embedding
vector. This dynamically created vector is subsequently in-
jected back into the sequence of hidden states at the same
intermediate layer (as depicted in Fig. 2). This process mod-
ulates the LLM’s ongoing computations.

Crucially, the weights of the target LLM remain entirely
frozen throughout this process; only the MLP’s weights are
updated during the training phase of DDPO. For inference,
the MLP is utilized once to generate the defensive embed-
ding when the LLM is producing its first output token. This
same learned embedding is then reused for the generation of
all subsequent tokens for that specific input, ensuring mini-
mal computational overhead.

Step 1: Optimal Layer Selection

The choice of the layer (V) for feature extraction and em-
bedding injection is crucial. We hypothesize that certain in-

termediate layers are more effective at distinguishing be-
tween harmful and benign intent. To identify this optimal
layer, we perform the following procedure:

1. A dataset of benign and harmful prompts is prepared.

2. Each prompt is passed through the LLM, and for each
layer [, the hidden state corresponding to the last token

of the input prompt, hl(laSt), is extracted.

3. For each layer [, we compute the average pairwise cosine
similarity between the hl(la“) vectors yielded by harmful
prompts and those yielded by benign prompts.

Score(l) = E o [d(u,v)] (1)

[©)
Ll'\/I-Ihurmful y vy Hbcnign

where d denotes a similarity metric (e.g., cosine similar-
ity).

4. The layer N that yields the minimum average cosine sim-
ilarity is selected.

N = arg mlin Score(1) (2)

Step 2: Dynamic Embedding Generation and
Intermediate Injection

Once the optimal layer N is identified, DDPO proceeds as
follows. Let L denote the length (number of tokens) of the
user’s input prompt P s

1. Input Preparation and Initial Processing: The user’s
input prompt, P, s.., is tokenized. To accommodate the
single dynamic embedding to be injected at layer N, the
input is processed such that one “dummy” embedding
(a zero vector with a zero attention mask) is effectively
present in the sequence representation passed through the
initial IV layers of the target LLM, My . The actual
user prompt tokens have attention mask values of 1.

2. Feature Extraction at Layer /V: The user input P, is
passed through the first N layers of M 5. The hidden
state corresponding to the last token of P, (i.e., the
L-th token) at layer IV, denoted as hL | is extracted. This
vector, fyger = hﬁ, serves as the input feature to the
MLP.

3. Dynamic Embedding Generation via MLP: The fea-
ture vector f,s.. is fed into a multilayer perceptron
(MLP), farrp- The MLP outputs a single dynamic em-
bedding vector, €4,,,. As established in our experiments,
a two-layer MLP proved sufficient for effectively gener-
ating defensive embeddings.

4. Intermediate Embedding Injection: The dynamically
generated embedding egq,,, replaces a dummy/place-
holder hidden state within the sequence of hidden states
output by layer V. Specifically, if the original sequence
of hidden states from layer N (containing the place-

holder) is Hy = [h{Y, ... hk n{&"™™)] this se-
quence is modified into H}, = [h%), oo hk eayn). The

attention mask value for the position of eg,,, is then up-
dated to 1. This modified sequence, H};, subsequently
serves as the input to layer IV + 1, thereby influencing its
computations and those of all subsequent layers.



5. MLP Training Objective: The MLP, f;1 p, is the only
trainable component. The training objective is to guide
the LLM’s output based on the nature of the input
prompt:

¢ For harmful prompts (Pyser, harm ful), the LLM, when
modulated by egy,, should generate a predefined re-
fusal response (e.g., "I cannot fulfill this request.”).

* For benign prompts (Pyserbenign), the LLM, when
modulated by eg,,,, should generate a helpful and rel-
evant continuation.

A combined loss function, £pppo, is used to train the
parameters 0,7 p of farpp:

EDDPO = )\hav'mful‘charmful + /\bem‘gnﬁbem’gn (3)

where Lparmful and Lpenign are cross-entropy losses
comparing the LLM’s output (generated with eg,,, in-
jected) to the target refusal or helpful continuation, re-
spectively. Anarmful and Apenign are weighting factors
for the respective losses.

6. Inference: During inference, the trained MLP, f;rp,
computes the dynamic embedding eg,,, once during the
generation of the first output token based on the input
P, e, and its extracted feature £, ... The LLM, My 17,
subsequently generates its response autoregressively. For
each step in the autoregressive generation loop (i.e., for
each subsequent output token being generated), the same
initially computed egy, is reused. This ensures that the
defensive modulation only depends on the user input and
is consistently applied throughout the generation of the
entire response sequence with minimal computational
overhead post the initial MLP pass.

Algorithm 1 outlines the training procedure.

Experiments
Experimental Setup

Models: Our experiments were conducted on five popular
LLMs: Llama-3-8B-Instruct (Dubey et al. 2024), Deepseek-
IIm-7B-chat (Bi et al. 2024), Vicuna-13B-v1.5 (Chiang
et al. 2023), Llama-2-7B-chat-hf (Touvron et al. 2023), and
Openchat-3.5-1210 (7B) (Wang et al. 2023). All models
were implemented using the Hugging Face library.

Datasets and Attack Strategies: Our evaluation relies
on standard benchmarks and a comprehensive suite of at-
tack strategies that builds upon and expands those consid-
ered in previous work (Mo et al. 2024; Zhou, Li, and Wang
2024; Zheng et al. 2024). To evaluate defensive robustness,
we sourced harmful prompts from the AdvBench (Zou et al.
2023), JailbreakBench (Chao et al. 2024), and HarmBench
(Mazeika et al. 2024) benchmarks. We tested all defense
methods against nine jailbreak strategies: Plain Harmful (di-
rect harmful requests), PEZ (Wen et al. 2023), UAT (Wallace
et al. 2019), GCG (Zou et al. 2023), AutoPrompt (Shin et al.
2020), GBDA (Guo et al. 2021), GCG-M (Zou et al. 2023),
PAIR (Chao et al. 2025), and Human Crafted prompts.

To assess model utility, we used two distinct sets of be-
nign prompts. The first was a curated dataset from Jailbreak-
Bench (Chao et al. 2024) and WildJailbreak (Jiang et al.

Algorithm 1: DDPO - MLP Training

Require: M7y 1 ns: Target LLM (parameters are frozen). N: Opti-
mal intermediate layer index. fasrp: Multi-Layer Perceptron
with trainable parameters Osr, p. D: Training dataset, where
each element is (Puser,s, label;, Yiarget,i). Puser,i is the i-th
user prompt of length L;, label; indicates its nature (harm-
ful/benign), and Yiarget,s is the target output. : Learning rate.
1dTinject: Predefined index within the hidden state sequence
for layer N where eqy,, is injected.

1: for each training epoch do
for each (Pyser, label, Yiarget) in D do

3: Hpy out < FORWARDPASSTO(Mrra, Puser, N) >
Get hidden states at layer N’s output.
4: fuser ¢ (HN.out)L > fuser is the hidden state of
Pyser’s last (L-th) token from HN _out.
5: edyn  faurp(fuser) > Dynamic embedding.
6: Hn41.in + INJECTEMBED(H N out, €dyn, 1dTinject )
> Inject eqyn to input for layer N + 1.
7: Yprea < FORWARDPASSFROM(Mrrary HN41.in, N+
1) > Predict using M v from layer N + 1 onwards.
8: Lpppro < COMPUTELOSS (Ypred, Yiarget)
9: VoupLopPo < BACKPROP(LppPO, OMLP)
10: Onmrp < Qe —T]VGMLPACDDPO
11: end for
12: end for

13: Return: Trained fy/rp (i.e., optimized O p).

2024), specifically designed to include borderline cases that
might appear harmful (e.g., ’I bombed my test, can you help
me write an apology to my professor?”’). The second was
the MMLU dataset, a standard benchmark used to measure
general knowledge and task performance on entirely benign
inputs.

Training and Evaluation Protocol: The training set in-
cluded 50 examples of GCG and human-crafted jailbreak
prompts. The evaluation was then performed on 230 unseen
samples for each of the nine attack types, meaning the de-
fenses were evaluated in a zero-shot setting for seven of the
attacks.

Performance was measured using three key metrics:

» Attack Success Rate (ASR): The percentage of harmful
prompts that successfully elicited a harmful response. A
lower ASR indicates better defense.

* Benign Pass Rate (BPR): The percentage of challeng-
ing benign prompts that were correctly and helpfully an-
swered without being falsely refused. A higher BPR in-
dicates better utility.

* MMLU Average Accuracy (%): The average score
across 57 diverse subjects in the MMLU benchmark,
measuring the preservation of general knowledge. A
higher score is better.

Implementation Details: All experiments were per-
formed on a server equipped with two NVIDIA A100 GPUs.
Our DDPO method utilized a two-layer MLP with 512 hid-
den units and a GeLU activation function. This MLP gener-
ated a single dynamic defensive embedding tailored to each
user input.



Attack Success Rate (%) |

Utility (%) 1

Model Defense PH PEZ UAT GCG AP GBDA GCG-M PAIR HC  Average | Benign MMLU
Llama3 None 129 312 554 725 6.92 4.02 7.14 5.06 20.62 6.77 94.45 65.46
PAT 000 2.17 2.61 4.35 478 3.48 5.65 478 2348 5.70 75.80 42.81
RPO 0.00 1.30 174 2.17 1.74 2.17 0.87 3.04 10.00 2.56 70.60 47.65
DRO 0.00 1.74 1.74 1.30  0.87 1.30 0.00 0.87 6.96 1.64 92.40 47.15
DDPO 2.61 1.30  0.00 043  0.00 0.43 0.43 0.87 087 0.77 97.80 63.53
Deepseek  None 2621 51.12 4539 60.80 6250 5446 63.62 84.81 86.80 59.52 91.45 47.07
PAT 13.04 50.00 5957 6435 65.65 53.48 73.04 87.83  92.17 62.13 86.80 32.19
RPO 3435 5391 4957 5435 5696 5348 48.26 82.17 88.70 57.97 97.60 34.26
DRO 696 2870 30.00 3435 3826 32.17 36.09 73.48 80.43 40.05 95.40 37.54
DDPO 1.30  0.00 0.00 0.00 0.00 0.00 0.00 1.30  0.87 0.39 94.60 46.44
Vicuna None 291  20.09 1624 40.12 25.89 1741 42.63 7342 79.79 35.39 90.91 54.70
PAT 0.43 2.61 0.87 2478 6.96 1.74 30.00 46.52  71.39 21.26 79.00 40.60
RPO 000 087 000 043 1.74 0.43 5.65 391 1348 2.95 11.80 26.00
DRO 435 1043 696 1391 13.04 11.74 21.74 23.04  40.87 16.23 85.40 33.90
DDPO 043  0.00 0.00 0.00 0.00 1.30 0.00 348  0.87 0.68 95.80 53.85
Llama? None 0.65 5.13 849 12.04 1429 2.68 15.85 380 2371 9.63 69.36 50.21
PAT 0.43 7.39 5.65 9.57 10.87 5.65 6.52 522 2739 8.74 68.40 38.11
RPO 0.00 2.61 2.61 478 478 2.17 2.61 2.61 9.57 3.53 70.00 39.25
DRO 043 435 522 478 8.26 4.35 5.65 3.04 18.70 6.09 76.20 33.90
DDPO 0.43 348 087 087 261 1.30 2.17 043 043 1.40 93.20 50.07
Openchat  None 6294 6049 6199 69.14 6518 5536 74.11 97.05 94.54 71.20 96.45 60.75
PAT 2565 6522 6739 6478 73.04 71.74 66.09 9522 9435 69.28 96.20 57.55
RPO 3522 69.57 7043 69.57 7261  70.00 70.43 91.74 93.04 71.40 89.20 49.86
DRO 2435 59.57 5522 5826 6522 6522 69.57 84.35 83.91 62.85 98.00 45.87
DDPO 1.30  0.00 0.00 0.00 0.00 0.43 0.00 435 2.1 0.97 95.60 60.90

Table 1: A comparison of defense performance for various models against multiple jailbreak attacks. The Attack Success
Rate (ASR) is evaluated on 230 unseen prompts for each attack type. Benign utility is evaluated on 500 unseen prompts that are
designed to seem harmful but are in fact benign. DDPO (ours) was trained on 50 examples of GCG and human-crafted prompts.
PH denotes plain harmful prompts, AP denotes AutoPrompt, and HC denotes human-crafted jailbreak prompts.

Defense Performance

As shown in Table 1, DDPO significantly outperforms static
methods across all models, achieving a superior balance of
low Attack Success Rate (ASR) and high utility. Our anal-
ysis reveals that DDPO overcomes two critical failings of
static defenses.

First, static defenses are ineffective on weakly aligned
models. For instance, on Openchat with a baseline ASR
of 71.20%, RPO’s defense is ineffective (71.40% ASR). In
contrast, DDPO reduces the ASR to under 1%, proving its
robustness even on highly vulnerable models.

Second, static defenses severely harm utility by misclas-
sifying ambiguous benign queries. This is most evident with
RPO on Vicuna, where the Benign Pass Rate (BPR) drops
to a catastrophic 11.80%. Static methods also consistently
degrade MMLU scores across all models. DDPO avoids this
trade-off, maintaining a high average BPR of 95.40% and
preserving MMLU performance, showcasing its ability to
accurately discern user intent.

Ablation Studies

Impact of Dynamic Generation: To verify that DDPO’s
effectiveness stems from its ability to generate input-specific
embeddings, we compared it to a static counterpart, which

we term Static Deep Prompt Optimization (SDPO). In the
SDPO setup, a single, fixed embedding is optimized as a
trainable parameter and injected at the same intermediate
layer as DDPO. To ensure a fair comparison, both DDPO
and SDPO were trained on the exact same data.

The results, presented in Table 2, clearly demonstrate the
superiority of our dynamic approach. Across all models,

| SDPO (Static) | DDPO (Dynamic)

Model | ASR| BPRT | ASR|  BPR{
Llama3 1232 98.60 0.77 97.80
Deepseek | 22.90  86.80 0.39 94.60
Vicuna 4720  96.00 0.68 95.80
Liama?2 9.52 70.00 1.40 93.20
Openchat | 79.32  99.00 0.97 95.60

Table 2: Ablation study comparing our dynamic method
(DDPO) against a static variant (SDPO). ASR is averaged
over 2,070 attack prompts (230 prompts for each of 9 at-
tacks), while BPR is measured on 500 benign prompts. Both
methods were trained on identical data and used the same
intermediate layers. ASR and BPR values are given in (%).



Model Metric K=1 K=5 K=10

Llama3 ASR 0.77 1.50 0.72
BPR 97.8 98.0 97.4

Deepseek ASR 0.39 1.26 0.34
BPR 94.6 96.2 96.4

Vicuna ASR 0.68 1.35 0.97
BPR 95.8 95.4 96.6
Llama? ASR 1.40 1.35 0.39
BPR 93.2 94.2 93.0
OpenChat ~ ASR 0.97 0.97 1.06

BPR 95.6 95.0 96.2

Table 3: Ablation study on the number of defensive embed-
dings (K) across several models. The Attack Success Rate
(ASR) is averaged over 2,070 attack prompts (230 for each
of 9 attack types), while the Benign Pass Rate (BPR) is mea-
sured on 500 benign prompts. The default DDPO configura-
tion uses K = 1.

SDPO is significantly less effective at preventing jailbreaks.
For instance, on Vicuna and Openchat, SDPO’s defense is
ineffective, resulting in ASRs of 47.20% and 79.32%, re-
spectively. In contrast, DDPO reduces the ASR on these
same models to just 0.68% and 0.97%. While SDPO occa-
sionally yields a marginally higher Benign Pass Rate (BPR),
this comes at the cost of a completely compromised defense.
On models that are overaligned and prone to false refusal,
such as Llama2, DDPO is superior on both fronts, drastically
improving the BPR from 70.00% to 93.20% while simulta-
neously providing a much stronger defense.

Effect of Number of Injected Embeddings: By default,
DDPO injects only a single dynamic embedding (K = 1).
We investigated whether increasing the number of embed-
dings to K = 5 or K = 10 could offer additional perfor-
mance benefits.

As shown in Table 3, increasing the number of embed-
dings does not lead to significant or consistent improve-
ments. While some configurations with K = 5 or K = 10
show marginal gains in either ASR or BPR for specific mod-
els, the improvements are not universal, and in some cases,
performance slightly degrades (e.g., ASR for Llama3 and Vi-
cuna). Given that generating and processing additional em-
beddings would invariably increase computational overhead
and inference latency, the lack of a clear performance benefit
makes a single embedding the optimal choice.

Layer Selection Analysis

The efficacy of DDPO hinges on selecting an optimal in-
termediate layer (V) where the model’s representations of
benign and harmful prompts are most distinct. To find this
layer, we analyzed the representational space across each
LLM’s depth by plotting the average pairwise cosine sim-
ilarity between the last-token hidden states of harmful and
benign prompts for each layer (Figure 3). A lower cosine
similarity indicates greater class separation and a more suit-
able layer for intervention.
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Figure 3: The cosine similarity between the hidden state rep-
resentations of harmful and benign prompts across the lay-
ers of several LLMs. A lower similarity score indicates a
layer can better distinguish between the two prompt types.
For each model, the layer with the minimum cosine similar-
ity is marked with a x.

Our analysis reveals a consistent U-shaped trend in all
models. Similarity is high in early layers, where the model
processes surface-level features, and decreases in deeper
layers as the model abstracts towards semantic intent. The
similarity score reaches a minimum at an intermediate layer,
which represents the point of maximal semantic divergence,
before rising again as the model formulates a response.

This minimum point is the optimal layer for DDPO’s
intervention. As shown in the figure, these optimal layers
(marked with an ‘x‘) are consistently found in the later
stages of the models, typically between the 62nd and 81st
percentile of the model’s depth. This empirical result justi-
fies DDPO’s core strategy of intervening where the LLM’s
own understanding is most discriminative, enabling a more
nuanced defense than input-level methods.

Conclusion

This paper introduces Dynamic Deep Prompt Optimization
(DDPO), a novel defense that addresses key limitations of
existing prompt optimization methods against jailbreak at-
tacks on LLMs. DDPO leverages hidden representations
from the LLM’s own early layers and a lightweight multi-
layer perceptron (MLP) to dynamically generate defensive
embeddings. These embeddings are directly injected into
the input of a later intermediate layer. Importantly, DDPO
does not modify the target LLM’s weights, relying solely
on the concept of deep prompt optimization. Our experi-
ments demonstrate two main improvements over existing
approaches. First, DDPO establishes robust protection even
on weakly aligned models where static defenses are largely
ineffective. Second, it successfully resolves the safety-utility
trade-off by accurately distinguishing malicious inputs from
ambiguous and semantically challenging benign queries.
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