Fixbench-RTL: A Comprehensive Benchmark for
Evaluating LLLMs on RTL Debugging

Shijie Li*, Weimin Fuf, Yifang Zhao*, Xiaolong Guof, Yier Jin*,
*University of Science and Technology of China, {shijie_li, zhaoyifang} @mail.ustc.edu.cn, jinyier@ustc.edu.cn
TKansas State University, {weiminf, guoxiaolong} @ksu.edu

Abstract—The rapid advancement of large language models
(LLMs) has presented new avenues for automating complex tasks
in hardware design and verification. Due to the time-consuming
and labor-intensive nature of hardware code debugging, there
has been a growing interest in leveraging LLMs for automating
this process. However, benchmarks used in existing studies tend
to be simplistic, limited in bug type, and proposed by the authors
themselves. In this paper, we introduce a novel benchmark named
Fixbench-RTL and its construction framework, specifically de-
signed to assess the ability of LLMs to identify and correct bugs
in HDL-based hardware designs. The benchmark covers a broad
spectrum of error types, including syntactic errors, functional
bugs, and security vulnerabilities. Experimental evaluations show
that current popular LLMs still fall short of meeting the practical
requirements for hardware debugging. The benchmark aims
to provide a foundation for future research in LILM-assisted
hardware debugging.

Index Terms—Large Language Model, Hardware Debugging,
Hardware Benchmarking

I. INTRODUCTION

The increasing scale and complexity of modern hardware
systems have significantly amplified the challenges associated
with design verification and debugging. Register Transfer
Level (RTL) design, commonly implemented using Hardware
Description Languages (HDLs) such as Verilog and VHDL,
forms the foundation of digital circuit development. However,
the process of debugging RTL code remains notoriously
difficult. It often requires deep domain expertise and exten-
sive manual effort, especially as designs grow in size and
incorporate intricate timing and concurrency behaviors. Unlike
software programs, HDL modules execute concurrently, are
highly sensitive to signal timing and ordering, and must adhere
to synthesis and simulation constraints. These characteristics
make error localization and correction a time-consuming,
iterative task that is difficult to automate.

In parallel, the advent of large language models (LLMs)
has opened up promising opportunities for automation across
a wide range of code-related tasks. Pretrained LLMs have
shown strong performance in code generation, completion,
and even bug fixing in high-level programming languages.
Their success in learning complex patterns from massive code
corpora raises the possibility of extending these capabilities to
hardware domains. However, directly applying LLMs to RTL
debugging presents unique challenges due to the syntactic and
semantic gap between HDLs and general-purpose languages.

979-8-3315-8924-0/25/$31.00 ©2025 IEEE

Recent efforts [1]-[4] have begun to explore the use of
LLMs for HDL understanding, generation, and debugging.
Nevertheless, progress in this area is hindered by a major
limitation: the absence of a standardized and comprehensive
benchmark for evaluating model performance on RTL debug-
ging tasks. Existing benchmarks used in prior work [3]], [S]—[7]
often suffer from limited test case coverage, a narrow range
of bug types, or the absence of simulation-based functional
verification, making it difficult to reliably evaluate real-world
debugging performance.

To address this gap, we present a novel benchmark specif-
ically designed to evaluate LLMs on RTL debugging tasks.
Each test case in our benchmark consists of four components:
a buggy RTL code, its corresponding corrected version, a
natural language description of the bug, and a simulation-
based testbench for functional verification. The benchmark
combines both synthetic and real-world errors, covering a wide
spectrum of RTL errors, including syntax violations, functional
bugs, and design vulnerabilities. Our benchmark enables more
accurate and meaningful assessment of LLM-based debugging
systems.

The main contributions of this paper are:

« We construct the Fixbench-RTL, an open-source bench-
mark for evaluating RTL code debugging capabilities of
LLMs. It contains a diverse set of error types and is
challenging to identify and fix correctly.

« We propose a framework for constructing benchmarks,
which includes methods for bug injection and testbench
generation. This approach enables easy expansion of the
benchmark.

e Through experiments with state-of-the-art LLMs, we
assess their current strengths and limitations, offering
insights into areas where further research is needed.

II. BACKGROUND AND RELATED WORK
A. LLMs for RTL Code

LLMs like Codex [8] and StarCoder [9] have revealed
the tremendous potential of LLMs in software tasks. Recent
work has explored the application of LLMs in various RTL
code-related tasks, such as code generation [2], [10]], bug
detection [11f], and automated repair [5]], [[7]. To enhance
LLM performance on hardware tasks, [12f], [[13]] have adopted
prompt engineering techniques to better guide LLM behavior
and improve output quality. [2f], [[14]] have focused on building

Raw data Triplet Construction Benchmark Testbench Generation

»n B o RTL [= O o _ |- & Buggy o LLM Testbench
P| o (2 e L Qe
S - Prompt Wad — -~
= g - i Templatel L —7 g
. Error - o =D correct — T -
O Message | — > | —

- _ || » | = | Code x

_/-.

-.’ —
< o .M — [L [y Bu AL
75 Version | —|T] LLM > | = | Description
> = Prompt Buggy Code Fails
S)
e New (2N Template2 - Correct Code Passes
G] Version | —— | 1] —— | Testbench <

9 Simulator

Fig. 1: Fixbench-RTL overview: the raw data of the benchmark is sourced from open-source RTL datasets and error reports (step
@). or the GitHub version control dataset (step @). The framework utilizes LLM to generate Buggy Code-Correct Code-Bug
Description triples from the raw data (step 9). Then the testbench is automatically generated through the cooperation of
LLM and the simulator (step e). Finally, combine the four parts to construct Fixbench-RTL Benchmark (step @).

domain-specific hardware datasets and training open-source
models, which have been shown to further boost performance.

B. Challenges of Applying LLMs to Hardware Debugging

Using LLMs for debugging HDL code introduces several
domain-specific difficulties. First, the semantics of HDL ex-
tend beyond syntax and logical correctness; they encompass
concurrency, timing behavior, and hardware synthesizability.
As such, a repair that appears correct syntactically may still
fail under simulation or synthesis due to subtle timing or
structural issues.

Second, evaluating LLM-generated repairs in the hardware
domain is inherently challenging. It requires the construction
of a sophisticated testbench to verify whether the repaired code
can pass the simulation. However, designing such a testbench
is both time-consuming and labor-intensive, often demanding
substantial domain expertise. To mitigate the cost of manual
testbench creation, AutoBench [15]] utilizes LLM to automate
the generation of a testbench for HDL design.

Finally, there is currently no widely accepted benchmark
for evaluating LLMs on hardware debugging tasks. Existing
studies often rely on benchmarks that are proprietary [6] or
exhibit limited diversity in design types and bug patterns [7].
This makes it difficult to compare approaches or track progress
in this emerging research area.

C. Related Work

Recent efforts have explored leveraging LLMs to assist in
hardware debugging. SBF [16] investigates the application of
prompt engineering techniques to guide LLMs in repairing
hardware security vulnerabilities. Their evaluation is based on
ten security bugs collected from CWE [17], OpenTitan [18],
and the Hack@DAC 2021 SoC [19]], offering insight into the
capabilities of LLMs in this domain.

LLM4SecHW [3]] constructs a dataset by mining version
control histories of open-source hardware projects, capturing
both design bugs and their corresponding fixes. Using this
dataset, they fine-tune LLMs to better detect and correct
hardware design flaws. However, their evaluation methodology
primarily relies on text-based metrics such as ROUGE-1,
which assess similarity rather than syntax and functional
correctness.

RTLFixer [5] combines prompt engineering with retrieval-
augmented generation (RAG), incorporating feedback from
hardware compilers to refine LLM outputs iteratively. This
approach focuses exclusively on resolving syntax errors in
RTL code and lacks focus on functional bugs.

HDLdebugger [6] adopts a reverse engineering approach
to build a debugging dataset, and enhances LLM capabilities
through supervised fine-tuning and RAG. Despite its technical
promise, the dataset used in this work is sourced from pro-
prietary Huawei data and is not publicly accessible, limiting
reproducibility and adoption.

MEIC [7]] introduces a multi-step debugging framework
involving two LLMs: a debug LLM that generates candidate
fixes, and a score LLM that evaluates and ranks them. Debug
LLM continues to generate new candidates until the highest-
scoring candidate passes syntax and function checks. Although
their benchmark consists of 178 samples, it is constructed from
only 29 RTL designs and includes 18 error types, limiting its
coverage for comprehensive evaluation.

III. METHODOLOGY

A. An Overview of the Fixbench-RTL

To systematically evaluate the capabilities of LLMs in de-
bugging RTL code, we construct a comprehensive benchmark
named Fixbench-RTL. Each benchmark entry is composed of
four key components:

TABLE I: Examples of RTL code errors contained in Fixbench-RTL.

Types Bug Detailed Description Buggy Code Correct Code
Module Definition Errors Port types not declared module Tff (data, clk, rst, q); modille THF(mput‘ wire data, clk, 1st,
output reg q);
Lo ‘reg‘ use continuous assignment (‘assign‘), reg q; reg q;
Signal Type Error ‘wire* be assigned in ‘always‘ blocks. assign q = temp; always@(*)begin q <= temp; end
4 Missing Punctuation Missing semi-colons, commas or brackets assigna =b assign a = b;
1<
1= . . .
E Undeclared Variable Use undeclared variable output q’_ . outpul q,_reg ler‘np,
- assign q = temp; assign q = temp;
]
-] full_adderl FO(.a(a[0]), ... ,.cout(c[0])); full_adder FO (.a(a[0]), ... ,.cout(c[0]));
& Module Instantiation Error Instantiating an unknown module
module full_adder (input a, ... , cout); module full_adder (input a, ... , cout);
functil::nulln:g;; (i:ilculate; function integer calculate;
Function Block Error Use timing control statements inside a function P #1’0, € input a; begin
’ i calculate = a + 1; ...
calculate = a + 1; ...
Incomplete Sensitivity Lists Missing signals in ‘always @()‘ blocks always @(a) begin q <= a + b; end always @(a,b) begin q <= a + b; end
always @(posedge clk) begin always @(posedge clk) begin
» Initialization Missing Registers are not initialized when reset if (reset) begin if (reset) begin
’é // counter is not initialized counter <= 0;
St
= Combinational L The output of the combinational logic is fed back to its assign A =B & C; assign A =B & C;
g © ational Loop input directly or indirectly, forming a delay-free loop. assign B = A | D; assign B =E | D;
2
E Functions Call Error Input mismatch errors when calling functions assign ¢ = data_rev(a); assign ¢ = data_rev(a, b);
=

Incorrect Operator Usage

Misusing logical (&& , ||) vs. bitwise (&, |) operators.

assign result = a & b; // 4°b1000

assign result = a && b; // 0

Incorrect Assignments

Use blocking assignment (=) for sequential logic

always @(posedge clk)
begin a = b + c; end

always @(posedge clk)
begin a <=b + c; end

Deadlock

There is a state of FSM that has no valid outgoing transition.

This can cause the system to halt or become stuck, unable
to proceed to any other state.

case (current_state)
IDLE: next_state = start ? S1:IDLE;
S1: next_state = S2;
S2: next_state = S2; // stuck here
default: next_state = IDLE;

case (current_state)
IDLE: next_state = start ? S1:IDLE;
S1: next_state = S2;
S2: next_state = done ? IDLE:S2;
default: next_state = IDLE;

Dynamic Deadlock

FSM gets stuck in a set of states that continuously loop

among themselves without reaching a stable or terminal state.

While the FSM is transitioning between states, it essentially
fails to make any progress, causing the system to be stuck in
an undefined or undesired behavior.

case (current_state)
IDLE: next_state = start ? S1:IDLE;
S1: next_state = S2;
S2: next_state = S1; // S1 S2 loop
default: next_state = IDLE;

case (current_state)
IDLE: next_state = start ? S1:IDLE;
S1: next_state = S2;
S2: next_state = done ? IDLE:S1;
default: next_state = IDLE;

Unreachable State

Design Vulnerabilities

There is a state that cannot be entered from the initial state,
no matter what sequence of inputs is applied. This could
occur due to errors in the state transition logic or improper
design.

case (current_state)
IDLE: next_state = start ? S1:IDLE;
S1: next_state = IDLE;
S2: next_state = S1; //S2:unreachabl¢
default: next_state = IDLE;

case (current_state)
IDLE: next_state = start ? S1:IDLE;
S1: next_state = IDLE;
default: next_state = IDLE;

Unhandled transitions

The FSM is not designed to account for all possible inputs
or states, resulting in undefined behavior when certain inputs
are received.

case (state)
IDLE: begin
if (control == 2°b01)
next_state = RUN;
end

case (state)
IDLE: begin
if (control == 2’b01)
next_state = RUN;
else next_state = IDLE;
end

Hamming Distance

If two consecutive (reachable) unprotected states have a
Hamming Distance (HD) greater than 1, a single-bit fault or
glitch could cause a transition to an unintended third state

parameter IDLE = 3°b000;
parameter RUN = 3°b011;
parameter DONE = 3’b110;

parameter IDLE = 3°b000;
parameter RUN = 3°b001;
parameter DONE = 3°b011;

Expression Always True

An “Expression Always True” typically indicates a logical
flaw or unintended behavior in the code.

if (data_in || 1’b1) begin //always true
data_out <= data_in;
end

if (data_in) begin
data_out <= data_in;
end

o Buggy RTL Code: the RTL code with bug.

¢ Correct Code: the corresponding fixed code.

Bug Description: natural language description of the bug.
o Testbench: the testbench for verifying that the fix is

correct.

The benchmark has 100 cases, and it is built from two

B. Error Injection

the testbench using LLMs and feedback from a simulator
(Section as shown in process @ in Figure

The Fixbench-RTL benchmark is available at |https://
huggingface.co/datasets/KSU-HW-SEC/Fixbench-RTL,

complementary sources: LLM-synthesized data derived from
open RTL datasets and error types (), 60%), and real-world
bug fixes extracted from GitHub version control histories (@),
40%). Figure [l| illustrates the overall framework for con-
structing the Fixbench-RTL. We construct the Buggy Code-
Correct Code-Bug Description triplets through error injec-

tion (Section [[II-B) and the GitHub version control dataset

(Section [[II-C) as shown in process @). Then we generate

To enrich the diversity of bugs, we perform targeted bug
injection on correct RTL designs. We categorize bugs based
on their types into three groups: syntax errors, functional
errors, and design vulnerabilities. We collect correct RTL code
from open-source hardware datasets such as RTLLM [[13]], and
obtain bug descriptions from prior work [7]], [20] or websites
such as CWE. Table [[shows the examples of bugs we injected.
We list 6 bugs in each type.

https://huggingface.co/datasets/KSU-HW-SEC/Fixbench-RTL
https://huggingface.co/datasets/KSU-HW-SEC/Fixbench-RTL

You are an expert in hardware design. I will give you a piece
of correct RTL code and a description of a bug to inject.
Please modify the code to introduce the specified bug.

Requirements:

1. Only introduce the bug described. Do not make unrelated
changes.

2. Maintain valid Verilog syntax unless the bug is a syntax
error.

3. Return only the modified Verilog code.

Correct RTL Code:
<INSERT_CORRECT_CODE_HERE>

Bug Description:
<INSERT_BUG_DESCRIPTION_HERE>

Fig. 2: Prompt template for bug injection in RTL code

Leveraging LLMs to inject bugs into RTL code has proven
to be an effective strategy [20]. To complete the task, we
design a prompt template—illustrated in Figure 2}—to guide
Deepseek-V3 in generating buggy code. This process
allows us to construct clean pairs of buggy and fixed code,
along with a bug description.

C. Github Version Control Dataset

You are an expert in hardware design and verification. I
will provide you with two versions of RTL code: a buggy
version and a corrected version. Your task is to analyze the
difference and summarize the bug that was fixed.

Instructions:

1. Carefully compare the two versions.

2. Identify the cause of the bug in the buggy version.

3. Write a concise and clear natural language description of
the bug.

4. Do not reference line numbers or variable names unless
necessary.

Buggy Version:
<INSERT_OLD_CODE_HERE>

Corrected Version:
<INSERT_NEW_CODE_HERE>

Output Format:
Bug Description: <A short and precise explanation of the
bug that was fixed.>

Fig. 3: Prompt template for analyzing and summarizing RTL
bug fixes.

To capture real-world bug patterns, we extract version
control histories from open-source hardware projects hosted on
GitHub [[11]]. We identify commit pairs that involve changes

to RTL files and apply filtering rules to isolate those likely
corresponding to bug fixes. Candidate commit pairs are then
evaluated using an LLM-based classifier to confirm whether
the changes represent actual bug fixes.

Using this version control dataset, we construct a debug
dataset. Figure[3)illustrates the prompt template employed with
Deepseek-V3 to extract bug information by comparing the old
and new code versions. Specifically, the old version serves
as the buggy code, the new version as the corrected code,
and the LLM’s output provides the bug description, forming
a triplet. This LLM-based extraction is necessary because
GitHub commit messages are often brief or lack sufficient
detail to describe the bug fully.

This methodology allows the benchmark to incorporate au-
thentic, developer-written bug-fix examples that reflect realistic
coding styles, thereby enhancing its representativeness and
practical relevance.

D. Testbench Generation

Testbenches are essential for verifying whether the repaired
RTL code successfully resolves the original bug. To serve as a
reliable functional oracle, each testbench must satisfy two key
conditions: (1) the buggy code should fail to pass verification,
and (2) the correct code should pass. These criteria ensure that
the testbench can accurately reflect the presence or absence of
errors.

You are an expert in hardware verification. I will provide
you with a buggy RTL module and its corrected version.
Your task is to generate a Verilog testbench that satisfies
the following conditions:

1. The testbench should fail when run with the buggy code.
2. The testbench should pass when run with the correct
code.

3. Include meaningful stimulus to trigger the bug behavior.
4. Ensure the testbench includes all necessary components
(e.g., clock, reset, input stimulus, and output checks).

5. Do not include explanations—only output the testbench
code.

Buggy Code:
<INSERT_BUGGY_CODE_HERE>

Correct Code:
<INSERT_CORRECT_CODE_HERE>

Output Format:
<Verilog testbench code>

Fig. 4: Prompt template for automatic testbench generation.

We employ DeepSeek-V3 to generate candidate testbenches
from both the buggy and corrected code, leveraging feedback
from simulation results and failure diagnostics. The prompt
template is shown in Figure [4] If a generated testbench does
not satisfy the required criteria, we iteratively refine the prompt

TABLE II: Performance of LLMs on the Fixbench-RTL benchmark under the 5-shot setting. Each model generates five candidate
solutions per case, and a task is considered successful if any candidate passes the corresponding testbench.

s Syntax Error Functional Error Vulnerabilities Github Issue
Affiliation Model

Detect Fix Detect Fix Detect Fix Detect Fix

GPT-3.5-turbo 70.0% 30.0% 25.0% 25.0% 26.7% 10.0% 12.5% 0%

GPT-4-turbo [22] 70.0% 50.0% 40.0% 25.0% 20.0% 10.0% 15.0% 0%

GPT-40 70.0% 50.0% 35.0% 25.0% 33.3% 20.0% 15.0% 0%

OnenAl GPT-40-mini 40.0% | 30.0% | 40.0% 15.0% 6.67% | 6.67% | 2.50% 0%

P GPT-01-mini 90.0% 60.0% 55.0% 30.0% 33.3% 20.0% 20.0% 2.50%

GPT-03-mini 80.0% 40.0% 55.0% 25.0% 36.7% 16.7% 10.0% 0%

GPT-4.1 90.0% 80.0% 50.0% 30.0% 33.3% 26.7% 12.5% 0%

GPT-4.1-mini 90.0% 60.0% 50.0% 25.0% 30.0% 13.3% 15.0% 0%

Anthropic Claude-3.5-sonnet 70.0% 30.0% 45.0% 25.0% 23.3% 13.3% 12.5% 0%

P Claude-3.7-sonnet 70.0% | 40.0% | 35.0% 25.0% 30.0% 16.7% 10.0% 0%
Google gemini-2.5-pro-preview | 50.0% | 200% | 35.0% | 200% | 233% | 100% | 150% | 0% |

DeepSeek-V3 [21] 80.0% | 60.0% | 30.0% 15.0% 433% | 200% | 15.0% 0%

DeepSeek-R1 [23] 90.0% 80.0% 25.0% 20.0% 26.7% 20.0% 12.5% 0%

DeenSeek DeepSeek-R1-Distill-Qwen-32B 50.0% 30.0% 20.0% 10.0% 16.7% 10.0% 22.5% 7.50%

P DeepSeek-R1-Distill-Qwen-14B 50.0% 30.0% 15.0% 10.0% 13.3% 6.67% 22.5% 7.50%

DeepSeek-R1-Distill-Qwen-7B 30.0% 10.0% 20.0% 10.0% 10.0% 6.67% 10.0% 0%

DeepSeek-R1-Distill-Qwen-1.5B 30.0% 10.0% 10.0% 5.00% 10.0% 0% 12.5% 0%

Qwen2.5-72B-Instruct [24] 70.0% | 40.0% 15.0% 10.0% 16.7% | 6.67% 15.0% | 7.50%

Qwen Qwen2.5-Coder-32B-Instruct 80.0% 50.0% 20.0% 10.0% 13.3% 6.67% 17.5% 10.0%

Qwen?2.5-Coder-7B-Instruct 50.0% 30.0% 15.0% 5.0% 6.67% 6.67% 12.5% 7.50%

MetaAl Llama3.3-70B-Instruct 40.0% 20.0% 30.0% 10.0% 23.3% 6.67% 17.5% 0%

Llama-3.1-405B-Instruct [25] 70.0% | 40.0% | 40.0% 15.0% 20.0% 10.0% | 20.0% 10.0%

using the simulation feedback and regenerate the testbench
until a valid one is obtained, ensuring it accurately detects
the bug in the faulty code and passes with the corrected
version. This automated, feedback-driven process facilitates
the efficient construction of high-quality testbenches while
minimizing manual effort.

IV. EXPERIMENT
A. Experimental Setup

In this section, we evaluate the hardware debugging capabil-
ities of various LLMs on the Fixbench-RTL benchmark. The
performance of the models is assessed on two primary tasks:

(1) Bug Detection: accurately identifying bugs in the given
buggy code;

(2) Bug Fixing: repairing the buggy code and generating the
correct version.

We evaluate both mainstream commercial and open-source
models, including: (1)OpenAl: GPT series models; (2)An-
thropic: Claude 3.5 Sonnet and Claude 3.7 Sonnet; (3)Google:
Gemini-2.5-pro-preview; (4)DeepSeek: DeepSeek series and
Distill models; (5)Qwen: Qwen2.5 series models.

Only the buggy code—stripped of all comments—is pro-
vided as input to the LLMs, without any additional contextual
information related to the bugs. This setting evaluates each

model’s ability to identify and fix issues solely from the code
itself, simulating a scenario in which a developer is unaware
of the potential errors.

We compute the pass rates for both tasks across the four
types described in Sections and offering a com-
prehensive assessment of the LLMs’ debugging performance.
Each model generates five candidate solutions for every test
case in Fixbench-RTL. For the bug detection task, another
LLM is used to determine whether the detected bugs match
the “Bug Description” in the benchmark. For bug fixing, a
model is considered successful if at least one of its generated
solutions passes the corresponding testbench.

To further analyze the complexity of buggy code across
different bug categories, we report the average number of
lines in buggy code for each type in Table Cases derived
from GitHub issues generally involve substantially longer code
fragments, suggesting that they often correspond to broader or
more complex modifications.

TABLE III: The number of cases and average number of lines
in buggy code of the benchmark across different bug categories

Bug Type Syntax Errors | Functional Errors | Design Vulnerabilities | GitHub Issues
Numbers of cases 10 20 30 40
Avg. Lines 72.30 92.55 100.87 210.70

B. Experimental Results

Table | summarizes the performance of all evaluated LLMs
across the two tasks. The pass rate denotes the fraction of test
cases successfully solved for each error type.

For syntax errors, LLMs demonstrate strong capabilities in
both detection and repair. GPT-4.1 and DeepSeek-R1 achieve
detection rates of 90% and repair rates of 80%, indicating that
most syntax issues can be readily recognized and corrected.

For functional errors, the highest repair rate observed is
only 30%. This limitation arises from the removal of all code
comments and the absence of functional descriptions, requiring
models to infer functionality purely from code semantics.
Without explicit functional guidance, LLMs often struggle to
determine the correct repair direction.

Design vulnerabilities are notably more challenging to
detect than functional or syntax errors. Since these flaws do not
disrupt normal functionality, they tend to be subtle and harder
to identify. The benchmark includes many FSM-related vulner-
abilities, where accurately extracting state transition logic and
identifying latent flaws poses an additional challenge. Among
all models, DeepSeek-V3 achieves the best performance, with
a detection rate of 43.3% and a repair rate of 20%.

GitHub issues typically involve large-scale and complex
hardware designs, making it difficult for LLMs to pinpoint
potential defects. Most models fail to produce valid repairs.
Although some models, such as Qwen2.5-Coder-32B, can
identify multiple potential bug locations—some of which may
indeed be correct—the overall repair rate remains low, with
Qwen2.5-Coder-32B achieving only 10%.

In summary, current state-of-the-art LLMs perform well
on syntax-related debugging but face significant challenges
in addressing functional errors, design vulnerabilities, and
complex real-world code. Providing additional contextual or
semantic information appears essential for improving their
debugging performance.

V. CONCLUSION

In this paper, we introduce Fixbench-RTL, a novel bench-
mark for evaluating LLMs on hardware debugging tasks,
focusing on RTL code. Fixbench-RTL contains 100 test cases
that cover a wide range of error types, including syntax
errors, functional bugs, and design flaws, as well as real-
world examples from GitHub issues. The proposed framework
allows for easy extension of the benchmark. Our experimental
results indicate that the hardware debugging capabilities of
current popular LLMs are insufficient for practical use. These
results underscore the need for further improvements in model
capabilities, particularly in understanding hardware-specific
patterns and handling complex designs. Our work lays the
groundwork for future research that aims to enhance the
hardware debugging abilities of LLMs.

ACKNOWLEDGMENT

Portions of this work were supported by the National
Science Foundation (2340949 and 2419880).

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]
(17]
(18]
[19]

[20]

[21]
[22]

(23]

[24]

[25]

REFERENCES

S. Thakur, B. Ahmad et al., “Benchmarking large language models for
automated verilog rtl code generation,” in 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE). 1EEE, 2023, pp. 1-6.
S. Liu, W. Fang et al., “Rtlcoder: Outperforming gpt-3.5 in design rtl
generation with our open-source dataset and lightweight solution,” arXiv
preprint arXiv:2312.08617, 2023.

W. Fu, K. Yang et al., “Lim4sechw: Leveraging domain-specific large
language model for hardware debugging,” in 2023 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST). IEEE, 2023,
pp. 1-6.

S. Li, W. Fu et al., “Intelligence in the fence: Construct a privacy and
reliable hardware design assistant llm,” in Proceedings of the Great
Lakes Symposium on VLSI 2025 (GLSVLSI ’25). ACM, 2025, p.
659-666.

Y. Tsai, M. Liu, and H. Ren, “Rtlfixer: Automatically fixing rtl syntax
errors with large language model,” in Proceedings of the 61st ACM/IEEE
Design Automation Conference, 2024, pp. 1-6.

X. Yao, H. Li et al., “Hdldebugger: Streamlining hdl debugging with
large language models,” arXiv preprint arXiv:2403.11671, 2024.

K. Xu, J. Sun et al., “Meic: Re-thinking rtl debug automation using
1Ims,” in Proceedings of the 43rd IEEE/ACM International Conference
on Computer-Aided Design, 2024, pp. 1-9.

M. Chen, J. Tworek et al., “Evaluating large language models trained
on code,” CoRR, vol. abs/2107.03374, 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

R. Li, L. B. Allal et al., “Starcoder: may the source be with you!” arXiv
preprint arXiv:2305.06161, 2023.

M. Liu, T.-D. Ene et al., “Chipnemo: Domain-adapted llms for chip
design,” arXiv preprint arXiv:2311.00176, 2023.

W. Fu, S. Li et al., “A generalize hardware debugging approach for
large language models semi-synthetic, datasets,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 72, no. 2, pp. 623-636,
2025.

S. Thakur, J. Blocklove ef al., “Autochip: Automating hdl generation
using 1lm feedback,” arXiv preprint arXiv:2311.04887, 2023.

Y. Lu, S. Liu et al., “Rtllm: An open-source benchmark for design rtl
generation with large language model,” in 2024 29th Asia and South
Pacific Design Automation Conference (ASP-DAC). 1EEE, 2024, pp.
722-727.

W. Fu, S. Li et al., “Hardware phi-1.5b: A large language model encodes
hardware domain specific knowledge,” in Proceedings of the 29th Asia
and South Pacific Design Automation Conference, ser. ASPDAC °24.
Incheon, Republic of Korea: IEEE Press, 2024, p. 349-354. [Online].
Available: https://doi.org/10.1109/ASP-DAC58780.2024.10473927

R. Qiu, G. L. Zhang et al., “Autobench: Automatic testbench generation
and evaluation using Ilms for hdl design,” in Proceedings of the
2024 ACM/IEEE International Symposium on Machine Learning for
CAD, ser. MLCAD ’24. New York, NY, USA: ACM, 2024. [Online].
Available: https://doi.org/10.1145/3670474.3685956

B. Ahmad, S. Thakur et al., “Fixing hardware security bugs with large
language models,” arXiv preprint arXiv:2302.01215, 2023.

T. M. Corporation, “CWE - CWE-1194: Hardware Design (4.1),” 2022.
[Online]. Available: https://cwe.mitre.org/data/definitions/1194.html
“Hardware | OpenTitan Documentation,” 2019. [Online]. Available:
https://docs.opentitan.org/hw/

HACK@EVENT, “HACK@DAC21 — HacK@EVENT,” 2022. [Online].
Available: https://hackatevent.org/hackdac21/

D. Saha, K. Yahyaei et al., “Empowering hardware security with 1lm:
The development of a vulnerable hardware database,” in 2024 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2024, pp. 233-243.
DeepSeek-Al, “Deepseek-v3 technical
Auvailable: https://arxiv.org/abs/2412.19437
OpenAl, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2303.08774
DeepSeek-Al, “Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning,” 2025. [Online]. Available: https:
/larxiv.org/abs/2501.12948

A. Yang, B. Yang et al., “Qwen2.5 technical report,” arXiv preprint
arXiv:2412.15115, 2024.

A. Grattafiori, A. Dubey et al., “The llama 3 herd of models,” arXiv
preprint arXiv:2407.21783, 2024.

report,” 2024. [Online].

https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/ASP-DAC58780.2024.10473927
https://doi.org/10.1145/3670474.3685956
https://cwe.mitre.org/data/definitions/1194.html
https://docs.opentitan.org/hw/
https://hackatevent.org/hackdac21/
https://arxiv.org/abs/2412.19437
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

	Introduction
	Background and Related Work
	LLMs for RTL Code
	Challenges of Applying LLMs to Hardware Debugging
	Related Work

	Methodology
	An Overview of the Fixbench-RTL
	Error Injection
	Github Version Control Dataset
	Testbench Generation

	Experiment
	Experimental Setup
	Experimental Results

	Conclusion
	References

