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Abstract—The safety of large language models (LLMs) under
hardware-induced perturbations remains an underexplored di-
mension of model reliability. Although LLMs are often treated
as stable and deterministic during inference, transient voltage
fluctuations, resulting from battery degradation and compu-
tational stress on edge devices, can induce faulty behavior,
including hallucinations, truncation, and inference failure, even
in non-adversarial settings. This study examines the extent to
which such power stress reveals model-specific vulnerabilities.
Controlled undervolting experiments were conducted on a Rasp-
berry Pi 5 using two instruction-tuned LLMs: google/gemma-
3-1b-it and meta-llama/Llama-3.2-1B. Despite operating under
identical hardware and load conditions, the models exhibited
significantly different responses to voltage degradation. The
observed discrepancies suggest that robustness to physical faults
is not an inherent characteristic of LLMs, but rather a learned
property influenced by training methodology and model design.
These findings underscore the need to treat hardware-induced
fault tolerance as a core aspect of LLM safety. Evaluating and
improving such safety properties is essential for deploying LLMs
in energy-constrained and long-lived edge environments.

Index Terms—Large Language Models, Edge AL, Robustness
Evaluation, Fault Injection

I. INTRODUCTION

Large Language Models (LLMs) have demonstrated re-
markable capabilities in natural language understanding, rea-
soning, and generation, enabling breakthroughs in tasks such
as document summarization, question answering, and code
synthesis [1], [2]. While cloud-based infrastructures have
traditionally supported the intensive computational demands
of LLM inference, growing concerns over data privacy and
latency are now driving a shift toward deploying these models
on resource-constrained edge devices. These include personal
assistants [3], [4], workplace agents [5], and industrial Inter-
net of Things (IoT) systems [6]. On-device inference offers
multiple advantages: it enables faster response times without
requiring network connectivity [7], improves data confiden-
tiality by eliminating the need for transmission to external
servers [8], and supports continual adaptation to user-specific
contexts through local learning [9].
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However, deploying LLMs in edge environments introduces
new reliability challenges. Unlike data centers equipped with
stable power supplies and active cooling systems, edge devices
are susceptible to environmental stressors, including battery
aging, thermal drift, and fluctuations in power delivery. These
conditions collectively contribute to voltage instability, par-
ticularly during sustained high-load computation. The self-
attention mechanism in LLMs exhibits quadratic complex-
ity with respect to sequence length, further intensifying the
computational burden on edge CPUs, GPUs, or NPUs, and
exacerbating throughput bottlenecks [10], [11]. Prior work
has shown that even minor voltage instability can lead to
transient computational faults [12]. Although LLMs are gener-
ally considered robust under precision reduction and quantiza-
tion [13], which form the basis of memory-efficient inference
techniques, faults introduced by undervolting are fundamen-
tally different from deliberate numerical approximations. The
model’s resilience to such faults depends on internal prop-
erties such as parameter distribution, numerical conditioning,
and redundancy. Voltage fluctuations, though typically non-
malicious and induced by environmental factors, effectively act
as unintended fault injection mechanisms. These perturbations
can cause numerical instability during forward propagation,
resulting in degraded performance, erroneous outputs, or infer-
ence failure. Despite their practical significance, these issues
remain underexplored in the context of LLM deployment, as
most robustness evaluations emphasize adversarial inputs or
synthetic noise perturbations [14]. In this work, we argue that
fault resilience in LLMs is not a uniform property across mod-
els. Instead, it varies with architectural design choices, training
data quality, and optimization objectives. To support this claim,
we conduct an empirical study on two publicly available
instruction-tuned models, gemma-3-1b-it [15] and Llama-3.2-
1B [16].These models are deployed on a resource-constrained
edge device, the Raspberry Pi 5, to evaluate their behavior
under controlled undervolting conditions. The overall setup is
illustrated in Fig. 1, where user inputs are processed locally,
and power faults are introduced through voltage control. Under
controlled undervolting conditions, we observe that the two
models exhibit distinct degradation behaviors, suggesting that
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Fig. 1. Evaluation setup showing deployment of Gemma3 1B and LLaMA
3.2 1B on Raspberry Pi 5 under undervolting conditions.

fault tolerance is highly model-specific rather than a universal
characteristic of LLMs. Our main contributions are as follows:

o This is the first study to systematically evaluate the
reliability and safety of LLM inference under transient
undervolting on edge devices, revealing a previously
overlooked class of model-specific vulnerabilities caused
by non-malicious voltage fluctuations.

« We empirically evaluate two 1B-parameter instruction-
tuned LLMs on Raspberry Pi 5 under identical under-
volting conditions, revealing distinct fault behaviors and
showing that hardware fault robustness depends on model
architecture and training.

« We identify two failure modes, gradual degradation and
abrupt collapse, and show that complex tasks such as
code generation are particularly vulnerable, underscoring
the need for hardware-aware LLLM robustness evaluation.

II. BACKGROUND

While LLMs demonstrate strong capabilities in language
understanding, reasoning, and generation, their high memory
and computational requirements pose major challenges for
typical edge devices. A practical trade-off has emerged through
compact models with fewer than 3 billion parameters, which
sacrifice some performance for improved deployability. Al-
though these models cannot match the capabilities of hundred-
billion-parameter LLMs, they can fit entirely in memory on
low-power hardware and run locally, slow but enabling offline
inference and better data privacy [8].

Recent progress in efficient transformer architectures,
mixed-precision inference, and hardware-aware optimization
has further facilitated this transition. Toolchains such as
GGUF, llama.cpp, and Ollama have demonstrated the fea-
sibility of running quantized LLM variants on consumer-
grade CPUs or lightweight GPUs with minimal external
dependencies. Despite these advances, most prior research
on secure or fault-tolerant inference in edge environments
has focused on traditional deep learning models, such as
convolutional neural networks and recurrent neural networks
[11], which have smaller model sizes and simpler computation
graphs. In contrast, LLMs introduce distinct challenges due

Fig. 2. Hardware setup for voltage fault experiments. Left: custom Noctua
active cooler; right: Pi 5 boards with and without active cooling.

to their deeper transformer stacks, attention mechanisms with
quadratic complexity, and heightened sensitivity to minor
numerical perturbations.

Moreover, edge devices often operate under non-ideal
hardware conditions, including battery degradation, thermal
fluctuation, and unstable power delivery. These factors can
cause dynamic voltage variation, particularly during sustained
high-load computation, which may in turn introduce silent
numerical faults [17] in critical operations such as matrix
multiplications, normalization layers, or attention mechanisms.
Such faults stem from physical hardware constraints and
differ fundamentally from adversarial attacks or quantization-
induced approximations; they cannot be effectively modeled as
Gaussian noise. Although prior studies have explored adversar-
ial robustness and quantization-aware inference for LLMs [13],
little attention has been paid to the vulnerability of instruction-
tuned LLMs to transient, hardware-induced faults [12], [18].

This work aims to address this gap by investigating how
voltage instability affects the inference robustness of LLMs
deployed on edge platforms. Understanding this underexplored
dimension of reliability is essential as LLMs become increas-
ingly integrated into safe and long-running edge applications.

III. METHODOLOGY

A. System and Deployment Configuration

All experiments were conducted on a Raspberry Pi 5 (model
SC1113), powered by a Broadcom BCM2712 system-on-chip
featuring a 64-bit quad-core Arm Cortex-A76 CPU clocked at
2.4GHz, with 512KB L2 cache per core and a shared 2MB
L3 cache. The system was equipped with 16GB of Micron
LPDDR4X-4267 SDRAM. Power was provided by the official
Raspberry Pi 27W USB-C power adapter (model SC1153),
capable of delivering up to 5.1V and 5A.

To maintain thermal stability during sustained computation,
we employed an active cooling unit (model SC1148). Addi-
tionally, we designed a custom 3D-printed enclosure housing
a Noctua NF-A8 fan for enhanced heat dissipation. Without
active cooling, the Raspberry Pi 5 frequently throttled its
CPU frequency to approximately 1.5GHz and reached the
thermal limit of 85°C under continuous load. The complete
experimental hardware setup is shown in Fig. 2.

All models were deployed using PyTorch with full precision
on Raspberry Pi OS. While the device was connected to a



local network, no external cloud inference was involved; all
computations were performed locally.

B. LLM Selection and Token-Level Workload Design

Two instruction-tuned LLMs were selected for evaluation:
gemma-3-1b-it and Llama-3.2-1B. These models represent
contrasting architectural and training philosophies.

The Gemma model features a 26-layer transformer with
1152 hidden dimensions, narrower MLP channels (6912), and
a normalized attention mechanism based on QK-normalization
and grouped query attention (GQA). It applies multiple nor-
malization layers, including pre- and post-FFN LayerNorms
and separate q_norm and k_norm components. These charac-
teristics make Gemma computationally efficient, with reduced
memory requirements and improved regularization, suggesting
better suitability for constrained environments.

In contrast, the LLaMA model employs a 16-layer trans-
former with wider channels (2048 hidden dimensions and 8192
in the MLP), using standard multi-head attention with RoPE
positional encoding and softmax normalization. This config-
uration introduces greater redundancy and wider numerical
margins, potentially offering higher tolerance to local faults
or perturbations. The model also uses fewer normalization
points and a simpler computation graph, which may reduce
the propagation of numerical drift across layers.

To ensure fair evaluation, both models were prompted with
identical inputs and assessed on the same set of benchmarks.
The evaluation suite comprises seven representative tasks,
spanning code generation, factual reasoning, commonsense
QA, toxicity detection, and multilingual understanding:

o Code Generation:

— HumanEval-X [19] (164 samples, max generation: 512

tokens): multilingual code synthesis; test-only.

— MBPP [20] (974 samples, max generation: 256 tokens):
Python function generation from natural language; test-
only.

« Knowledge & Reasoning:

— ARC-Challenge [21] (1172 samples, max generation:
64 tokens): multiple-choice questions requiring complex
reasoning.

— TruthfulQA [22] (817 samples, max generation: 64 to-
kens): tests robustness against factual misinformation.

— OpenBookQA [23] (500 samples, max generation: 16
tokens): science-based elementary-level multiple-choice
QA.

« Toxicity Detection:

— Toxigen [24] (940 samples, max generation: 32 tokens):
evaluates whether the model produces toxic responses
from ambiguous prompts.

o Multilingual Understanding:

— Belebele [25] (900 samples, max generation: 32 tokens):
English subset (eng_Latn) of a multilingual reading com-
prehension benchmark.

Each task was formatted to enforce consistent maximum
generation lengths (the upper limit on newly generated tokens),

independent of input prompt length, to ensure comparability
across models with different output behaviors.

C. Voltage Undervolting and Fault Injection Protocol

To simulate hardware-level instability, voltage perturbations
were introduced through controlled undervolting on the Rasp-
berry Pi 5. The over_voltage configuration parameter was
set to negative values ranging from 0 to —2. Voltage levels be-
low -3 were found to destabilize the operating system, making
such conditions infeasible for controlled experimentation.

Due to hardware constraints, undervolting settings required
a full system reboot and could not be modified dynamically
during inference. The system voltage was monitored using the
vcgencmd utility; however, it remained nominally constant
across runs, due to hardware-level voltage locking.

Unlike traditional fault injection approaches based on bit-
flips or synthetic weight perturbation, voltage-induced faults
originate from actual physical conditions. These faults cannot
be easily modeled as additive Gaussian noise and tend to affect
multiple computation components simultaneously, including
matrix multiplications and normalization layers.

D. Drift Tracing and Output Consistency Metrics

To quantify the impact of undervolting on inference stability,
both behavioral and internal consistency metrics were em-
ployed. For each input prompt, the full sequence of generated
tokens was recorded.

Model output under fault conditions was compared against
a baseline run at nominal voltage. The primary metric used
for internal deviation was the layer-wise L2 distance between
hidden state tensors, computed across the token sequence. This
measure captures the extent of accumulated numerical drift
across the transformer stack.

In addition to hidden-state drift, qualitative output consis-
tency was assessed. A generation was considered to have failed
if it produced empty outputs, crashed during decoding, or
yielded semantically incoherent content. These failure modes
reflect practical degradation in usability under real-world de-
ployment conditions.

IV. EXPERIMENT
A. Experimental Design and Objectives

This section investigates the effects of voltage instabil-
ity on the internal computations and functional behavior of
large language models. Both google/gemma-3-1b-it and meta-
llama/Llama-3.2-1B were evaluated under three voltage set-
tings, corresponding to over_voltage levels of 0, -1, and -2.
The test platform, Raspberry Pi 5, required a full system reboot
to apply new voltage configurations. During undervolting at
level -2, the system occasionally exhibited segmentation faults,
and in severe cases, full system hangs that required physical
power cycling.

All experiments used the same set of benchmark prompts
and a fixed random seed (42) to ensure consistency. Two forms
of degradation were monitored: token-level activation drift
and observable output failure. Activation drift was measured



TABLE I
PASS RATE COMPARISON FOR GEMMA3 1B ACROSS VOLTAGE SETTINGS AND BENCHMARK TASKS

Voltage | Voltage ARC-Challenge Belebele (eng Latn) HumanEval-X MBPP
V) Level Pass | Fail | Pass Rate | Pass | Fail | Pass Rate | Pass | Fail | Pass Rate | Pass | Fail | Pass Rate
0.8674 0 465 707 39.68% 46 854 5.11% 134 30 81.71% 488 | 486 50.10%
0.8433 -1 461 711 39.33% 38 862 4.22% 124 40 75.61% 471 503 48.36%
0.8126 2% 447 725 38.14% 33 867 3.67% 92 72 56.10% 289 | 685 29.67%
OpenBookQA Toxigen Truthful QA
Pass | Fail | Pass Rate | Pass | Fail | Pass Rate | Pass | Fail | Pass Rate

0.8674 0 10 490 2.00% 4 936 0.43% 147 670 17.99%

0.8433 -1 11 489 2.20% 5 935 0.53% 156 | 661 19.09%

0 .8126 2% 15 485 3.00% 9 931 0.96% 169 648 20.69%

* For over_voltage = -2, results were selected from multiple trials due to frequent segmentation faults and output instability.
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Fig. 3. Layer-wise L2 activation drift in google/gemma-3-1b-it under under-
volting across generation steps. Deviation accumulates noticeably in deeper
layers.
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Fig. 4. Layer-wise L2 activation drift in meta-llama/L.lama-3.2-1B under
undervolting across generation steps. Drift remains uniformly low across
layers.

by computing the layer-wise L2 distance between baseline
(normal voltage level) and undervolted hidden states. Output
degradation was defined to include both semantic errors and
decoding collapse. Notably, repeated runs under identical
conditions sometimes produced different results due to nonde-
terministic hardware behavior. Therefore, multiple trials were
conducted per setting, and the most representative runs were
selected for analysis and visualization.

B. Drift Patterns under Voltage Stress

To investigate internal numerical stability, the layer-wise L2
distance of activation tensors was computed between base-

line runs and undervolted runs at different generation steps.
Fig.3 and Fig.4 illustrate the distribution of drift magnitudes
across transformer layers for google/gemma-3-1b-it
and meta-1lama/Llama-3.2-1B, respectively. Each box
plot summarizes results from 10 independent inference runs
conducted under controlled undervolting.

In the case of Gemma3 1B (Fig. 3), the L2 distance
grows progressively with depth, particularly after layer 10.
Later layers exhibit significantly larger deviations, indicating
a drift accumulation effect along the transformer stack. This
trend is especially pronounced at generation steps beyond
the second token, suggesting that error propagation intensifies
with sequence length. The presence of multiple normalization
points throughout the architecture did not prevent the ampli-
fication of drift, implying that internal regularization alone
may be insufficient for fault attenuation under voltage-induced
perturbations.

By contrast, the LLaMA 3.2 1B model (Fig. 4) demon-
strates markedly lower L2 distances overall, with most values
remaining below 0.0005 across all layers and generation steps.
The drift distribution is more uniform, and no specific region
exhibits sharp instability. Despite having fewer normalization
layers, the wider hidden dimension and more redundant atten-
tion structure appear to suppress local perturbations more ef-
fectively. Notably, the absence of high-frequency spikes across
layers suggests that LLaMA’s architecture is less sensitive to
voltage-related noise in matrix multiplications.

These results indicate that numerical drift under under-
volting is not only depth-dependent but also highly model-
specific. Structural properties such as hidden width, normal-
ization placement, and attention scaling significantly affect the
model’s resilience to low-level physical disturbances.

C. Functional Degradation on Benchmarks

To evaluate the real-world impact of undervolting on end-
task performance, the Gemma3 1B model was tested across
seven benchmarks: ARC, Belebele, HumanEval-X, MBPP,
OpenBookQA, Toxigen, and TruthfulQA. Table I summarizes
the results under three voltage levels. Pass rates were computed



based on whether the generated output matched reference
answers, following benchmark-specific criteria.

Even under mild undervolting (over_voltage = -1), degrada-
tion was observed across most tasks. ARC and MBPP showed
slight decreases in pass rate, while TruthfulQA exhibited
improved robustness, possibly due to the discrete nature of its
question types. At more aggressive undervolting (over_voltage
= -2), performance dropped considerably in all tasks. For
instance, HumanEval-X pass rate fell from 81.7% to 56.1%,
and MBPP dropped from 50.1% to 29.7%. Output collapse
was also observed, including responses composed solely of
repeated tokens (e.g., “F”), indicating a loss of decoding
stability. Despite multiple runs, these artifacts persisted, and
results were assembled from the most coherent outputs across
trials.

To further analyze task-specific sensitivity, the degrada-
tion in functional accuracy across benchmarks was exam-
ined. Among all evaluated tasks, MBPP and HumanEval-X
exhibited the most pronounced decline under undervolting.
MBPP’s pass rate dropped by over 20 percentage points
when the over_voltage level was reduced from 0 to -2,
while HumanEval-X declined by more than 25 percentage
points. These results suggest that code generation tasks, which
rely on long-form consistency and multi-token reasoning, are
particularly vulnerable to voltage-induced errors.

In contrast, tasks such as ARC and Belebele showed rel-
atively minor reductions, under 2 percentage points. Surpris-
ingly, tasks including TruthfulQA, OpenBookQA, and Toxigen
displayed slight improvements under undervolting, though
these changes likely fall within statistical noise margins. The
inverted trend in Truthful QA may be attributed to the binary-
choice nature of the task, where random variation occasionally
aligns with the correct answer.

These findings indicate that robustness to hardware-level
faults is not uniform across benchmarks. Tasks involving
structured generation and token coherence appear significantly
more susceptible to drift accumulation, while short-response
or classification-style tasks show higher tolerance.

D. Summary of Observations

The experimental results demonstrate that voltage insta-
bility leads to both internal numerical drift and measurable
degradation in model performance. Drift accumulates pro-
gressively across transformer layers and manifests differently
depending on architectural properties. Output collapse and
response inconsistency were frequently observed, especially
under moderate to severe undervolting. These effects did not
always result in total failure but frequently degraded semantic
correctness.

These findings underscore the need for fault-aware evalua-
tion protocols in LLM deployment on edge platforms. Voltage-
induced failures, while nondeterministic and non-adversarial,
have the potential to silently compromise reliability. Robust-
ness in LLM inference should therefore be assessed not only
under synthetic perturbations but also in the presence of
realistic hardware constraints.

V. RELATED WORK
A. Voltage-Induced Faults and Hardware-Level Resilience

Prior research has extensively explored the impact of
hardware-level perturbations on the reliability of deep neu-
ral networks. Studies on bit-flip errors, memory faults, and
undervolting have demonstrated that even low-level physical
disturbances can significantly degrade model accuracy, espe-
cially in convolutional and recurrent architectures. For exam-
ple, hardware-level fault attacks such as Rowhammer—based
bit flips have been shown to impair DNNs dramatically,
sometimes reducing accuracy by over 90% with only a few
corrupted bits [26], [27]. In addition, undervolting experi-
ments on FPGA-based CNN accelerators have revealed a clear
reliability-power trade-off, where reduced supply voltage leads
to timing faults and increased error rates despite energy sav-
ings [18]. These works often propose algorithmic fault detec-
tion or masking mechanisms to mitigate degradation. However,
their focus remains on traditional CNN/RNN architectures
and synthetic fault injection methods, leaving transformer-
based LLMs under realistic undervolting conditions largely
unexamined.

B. LLM Robustness to Perturbations

The robustness of LLMs has been widely studied in the
context of adversarial attacks [28], prompt injections [29], and
data poisoning [30]. These perturbations are typically intro-
duced at the input or training data level to manipulate model
behavior without modifying the underlying architecture. For
example, adversarial prompts can elicit harmful or incorrect
outputs, while training-time poisoning can implant persistent
backdoors into LLMs. Although such attacks differ in mecha-
nism from hardware-induced faults, they share a common goal:
disrupting inference consistency and semantic correctness.
Despite the growing literature on adversarial robustness in
LLMs, little is known about how physical computation faults,
such as those induced by unstable power supply, interact with
model architectures to cause output instability. This study
highlights a complementary and underexamined dimension of
LLM vulnerability.

VI. CONCLUSION

This work investigates the fault resilience of instruction-
tuned LLMs on edge platforms via controlled undervolting
on Raspberry Pi 5. We identify two key failure modes:
numerical drift in hidden activations and degraded bench-
mark performance. Results show that robustness varies by
model—Gemma3 1B suffers severe drift and collapse, while
LLaMA 3.2 1B remains more stable. Structured generation
tasks like MBPP and HumanEval-X are especially vulnera-
ble. These findings underscore the need for hardware-aware
reliability evaluation in LLM edge deployments.
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