
HADA: Hardware Assertion through Data Augmen-
tation
Leveraging Multi-Source Knowledge for LLM-Based Security Assertion
Generation

Weimin Fu1, weiminf@ksu.edu
YitingWang2 ywang144@umd.edu
Zelin Lu2 zelinlu@umd.edu
Xiaolong Guo1 guoxiaolong@ksu.edu
Gang Qu2 gangqu@umd.edu

Background
• Security assertions are critical for
detecting hardware vulnerabilities during
pre-silicon verification, ensuring early
detection and reducing costly post-silicon
fixes.

• Manual assertion writing requires deep
domain expertise, is labor-intensive, and
often misses subtle vulnerabilities due to the
complexity of modern SoC designs.

• Traditional assertion generation tools
often lack adaptability to evolving threat
models and design changes, leading to gaps
in security coverage and delayed detection.

Motivation
• Automation enables broader vulnerability
coverage, improves verification efficiency,
and reduces human error.

• HADA leverages multi-source knowledge
(CWE, version control, FPV) and formal
validation tools to generate reliable security
assertions automatically.

• Domain-specific LLMs fine-tuned with
verified assertions achieve superior
performance over traditional methods.

Workflow
• 1–2: Generate assertions and hardware
design from CWE with GPT4o.

• 3–4: Extract versioned design pairs and
generate assertions from their diffs in the
version control system.

• 5-6: Use AutoSVA2 to generate tool-based
assertions from open source SoC designs.

• 7–8: Validate syntax using VCS and Verilator;
only passing assertions are retained. Explain
the Design and assertion with GPT4o.

• 9, X: Construct fine-tuning triplets and train
domain-specific LLMs. (LLaMA, FT
GPT4mini)

SystemVerilog
Assertion

Open Source 
Hardware Project

Open Hardware 
Security Database

Version Control
System

RTL Verilog
Code

Explanation

Simulator/Compiler 
pass

HADA
Training Dataset

SVA Domain Specific
Expert LLM

Finetuned LLaMA/GPT4omini

AutoSVA2

1

2

3

4

5

6

7

8

9

X

Figure 1:HADA workflow: integrating domain sources, gener-
ating & validating assertions, and producing fine-tuning
data.

Evaluation Results
Table 1: Performance Comparison of LLMs Pre- and Post-Fine-Tuning on FVEval and HSAEval (Func pass@1, 5)

FVEval: Nvidia FV RealWorld Benchmark
FSM Pipeline

HSAEval: Benchmark from
open source SoC

Functionality
Model

pass@1 pass@5 pass@1 pass@5 pass@1 pass@5
base 10.11% 41.37% 8.81% 37.01% 11.96% 23.91%

GPT4o-mini
HADA 9.42% 39.08% 34.52% 88.03% 15.22% 32.60%

base 17.08% 60.89% 12.03% 47.39% 11.96% 17.39%
LlaMA3 70B

HADA 30.58% 83.95% 23.19% 73.35% 17.39% 34.78%

base 24.26% 75.16% 18.93% 65.06% 7.17% 15.22%
LlaMA3.1 70B

HADA 30.58% 83.95% 23.19% 73.35% 12.60% 30.43%

base 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LlaMA3.2 3B

HADA 2.41% 11.49% 4.10% 18.91% 1.30% 2.17%

SOTA General Proprietary LLM

GPT4o 10.40% 42.70% 37.30% 90.00% 26.09% 28.26%

Prompt Methods - base on GPT4o mini

RTLFixer 0.00% 0.00% 0.00% 0.00% 0.22% 1.19%

DIVAS 0.00% 0.00% 0.00% 0.00% 0.22% 1.19%

LAAG 0.00% 0.00% 0.00% 0.00% 0.22% 1.19%

Fine Tuned LLM

LLM4SecHW 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Evaluation Highlights
• Fine-tuning with HADA leads to consistent
improvements across all evaluated LLMs,
except a slight drop (5%) in FSM tasks for
GPT-4o-mini.

• LLaMA-3.2B, initially unable to generate valid
assertions, gained basic functionality after
fine-tuning.

• Larger models (GPT-4o-mini, LLaMA-70B)
show significant gains in functionality
metrics after fine-tuning.

• HADA-trained models outperform existing
prompt-based (RTLFixer, DIVAS, LAAG) and
fine-tuned (LLM4SecHW) baselines by a
substantial margin.

Data Source Ablation
Raw data improves syntax but lacks security
depth. HADA’s augmented data boosts both
syntax and functionality.

Version control yields the best results due to
real bug-fix patterns. Formal verification is
precise but repetitive; CWE adds structure but
limited diversity.

Combining all sources performs best.
CWE+FPV is the weakest due to redundancy.

syntax functionality syntax functionality syntax functionality
FSM Pipeline

FVEval HSAEval
base 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Raw data 78.84% 0.00% 97.11% 0.00% 8.70% 0.00%
HADA 99.99% 21.71% 99.88% 34.32% 23.91% 13.04%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

(a) Raw vs. Augmented Data

1 5 10 1 5 10 1 5 10 1 5 10
syntax functionality syntax functionality

FSM Pipeline
CWE&FPV 28.9% 82.0% 96.8% 1.2% 5.7% 11.1% 31.2% 84.6% 97.7% 1.7% 8.3% 15.9%
CWE&VC 82.3% 100.0% 100.0% 7.5% 32.3% 54.3% 83.2% 100.0% 100.0% 10.4% 42.2% 66.7%
FPV&VC 50.3% 97.0% 99.9% 2.2% 10.5% 19.9% 55.9% 98.4% 100.0% 7.5% 32.2% 54.1%
HADA 71.5% 99.8% 100.0% 5.3% 23.8% 42.1% 76.3% 99.9% 100.0% 11.6% 46.2% 71.2%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%
100.0%

(b) Combined vs. Pairwise Composition

Figure 2: Performance comparison of data augmentation and source combinations. Bars represent pass@10 on syntax
and functionality across FSM/Pipeline

1 5 10 1 5 10 1 5 10 1 5 10
syntax functionality syntax functionality

FSM Pipeline
500 0.690 0.997 1.000 0.058 0.259 0.452 0.599 0.990 1.000 0.038 0.176 0.321
1000 0.573 0.986 1.000 0.028 0.133 0.249 0.482 0.963 0.999 0.042 0.192 0.348
1500 0.572 0.986 1.000 0.045 0.208 0.373 0.540 0.980 1.000 0.066 0.291 0.499

0.00

0.25

0.50

0.75

1.00

(a)CWE only

1.000 5 10 1 5 10 1 5 10 1 5 10
syntax functionality syntax functionality

FSM Pipeline
500 0.532 0.978 1.000 0.042 0.193 0.349 0.465 0.957 0.998 0.017 0.081 0.157
1000 0.225 0.721 0.923 0.015 0.072 0.138 0.192 0.657 0.883 0.012 0.057 0.110
1433 0.203 0.680 0.898 0.003 0.016 0.031 0.229 0.729 0.927 0.007 0.037 0.072

0.00

0.25

0.50

0.75

1.00

(b)FPV only

1 5 10 1 5 10 1 5 10 1 5 10
syntax functionality syntax functionality

FSM Pipeline
500 0.661 0.996 1.000 0.067 0.292 0.500 0.661 0.996 1.000 0.048 0.217 0.387
1000 0.759 0.999 1.000 0.081 0.344 0.570 0.714 0.998 1.000 0.062 0.274 0.474
1500 0.753 0.999 1.000 0.071 0.307 0.521 0.751 0.999 1.000 0.071 0.307 0.521

0.00

0.25

0.50

0.75

1.00

(c)VC only

Figure 3: Comparison of fine-tuning results from individual
data sources. VC leads to best functional assertions.

HSAEval Benchmark
• Coverage: 46 real-world security tasks
derived from TrustHub, OpenPiton, and CWE
vulnerabilities.

• Formal Verification: Each task includes a
SystemVerilog testbench and is evaluated
using JasperGold for assertion validity.

• Metric: Pass@k = 1−
(
n−c
k

)
/
(
n
k

)
, measuring

functional correctness under multiple
generations.

• Open Benchmark: Publicly released for
reproducible, community-driven evaluation.

• Purpose: HSAEval is specifically designed to
benchmark security assertion generation,
evaluating both syntactic validity and
vulnerability-mitigation effectiveness in
realistic SoC settings.

Takeaways & FutureWork
• HADA demonstrates how domain-specific
LLMs can reliably generate security
assertions.

• Multi-source alignment and verification
filtering are essential to training
effectiveness.

• The VC-based data source provides
high-value supervision signals, making it
critical for practical assertion learning.

• Syntax validation alone is
insufficient—functional correctness must be
ensured via formal tools during data
construction.

• Future: Expand benchmark with more
SoC-level tasks and integrate
simulation-based rewards.

• Explore instruction-tuning and RLHF with
Verilog-aware reward functions on the HADA
dataset.

Affiliations
1 The Mike Wiegers Department of Electrical
and Computer Engineering, Kansas State
University

2 Department of Electrical and Computer
Engineering, University of Maryland, College
Park

Funders

Portions of this workwere supported by the National Science
Foundation (2340949, 2419880).

Kansas State University k-state.edu


	Background
	Motivation
	Workflow
	Evaluation Results
	Evaluation Highlights
	Data Source Ablation
	HSAEval Benchmark
	Takeaways & Future Work
	Affiliations
	Funders

