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Abstract—The increasing complexity of integrated circuit design re-
quires customizing Power, Performance, and Area (PPA) metrics accord-
ing to different application demands. However, most engineers cannot
anticipate requirements early in the design process, often discovering
mismatches only after synthesis, necessitating iterative optimization
or redesign. Some works have shown the promising capabilities of
large language models (LLMs) in hardware design generation tasks,
but they fail to tackle the PPA trade-off problem. In this work, we
propose an LLM-based reinforcement learning framework, PPA-RTL,
aiming to introduce LLMs as a cutting-edge automation tool by directly
incorporating post-synthesis metrics PPA into the hardware design
generation phase. We design PPA metrics as reward feedback to guide the
model in producing designs aligned with specific optimization objectives
across various scenarios. The experimental results demonstrate that PPA-
RTL models, optimized for Power, Performance, Area, or their various
combinations, significantly improve in achieving the desired trade-offs,
making PPA-RTL applicable to a variety of application scenarios and
project constraints.

Index Terms—Hardware generation, PPA, Reinforcement learning.

I. INTRODUCTION

With the broader application of Integrated circuits (ICs) in var-
ious scenarios, IC design requirements have become increasingly
diverse [1]. Different applications demand tailored Power, Perfor-
mance, and Area (PPA) metrics, often resulting in designs that fulfill
similar functions but with vastly different optimization priorities.
For instance, high-performance computing prioritizes performance
over power efficiency, while IoT devices are susceptible to power
consumption.

The diversity of design requirements presents challenges for hard-
ware engineers. Hardware designs are described at the behavioral
or Register Transfer Level (RTL), focusing on functional logic,
while customized PPA optimization requires physical implementation
with precise layout, routing, and cell library. Engineers begin with
high-level hardware designs and then leverage Electronic Design
Automation (EDA) tools for logic synthesis [2], verification [3],
layout and routing [4], and timing analysis [5]. By defining appro-
priate constraints, fine-tuning tool settings, and adjusting outputs,
they strive to meet the stringent power, performance, and area
demands of modern ICs. However, these EDA tools are expertise-
driven, raising the entry barriers for circuit design. Most engineers
cannot anticipate requirements early in the design process, often
discovering mismatches only after synthesis, necessitating iterative
optimization or redesign. Thus, creating a PPA-oriented hardware
design generation tool can greatly improve development efficiency.

With the advent of ChatGPT, its powerful natural language pro-
cessing capabilities have brought new perspectives to many fields [6],
making large language models (LLMs) a highly promising au-
tomation tool. In the field of hardware design generation, several
studies [7]–[10] have shown that LLMs can autonomously produce
hardware designs that are both syntactically and functionally accurate,
offering convenience to hardware engineers. However, these models
fail to consider the practical applicability of designs across different

scenarios. To integrate post-synthesis metrics with the generation
model, we aim to construct a hardware generation LLM with high
flexibility.

LLM research technologies include prompting engineering, super-
vised fine-tuning (SFT), and Reinforcement Learning from Human
Feedback (RLHF). Prompting methods rely on commercial general-
purpose LLMs, struggling with the hallucination problem in general
LLMs [11]. SFT typically enhances an LLM’s performance by
training the model to mimic behaviors on domain-specific datasets,
but it falls short of meeting specific needs in specialized scenarios,
such as generating hardware designs that align with PPA preferences
tailored to specific application requirements. Moreover, SFT is highly
data-intensive [12], requiring datasets of over 10, 000 examples to
induce noticeable shifts in model behavior. Constructing such large-
scale datasets for a specific scenario is nearly impossible, making it
challenging to achieve tailored optimization using SFT alone. RLHF
optimizes model behavior by incorporating human feedback and
reinforcement learning (RL), which helps mitigate hallucinations [13]
and reduces the need for large-scale datasets, typically requiring only
a few thousand samples focused on quality rather than quantity.

In this work, we leverage RLHF-based LLM technology to gen-
erate hardware designs that better suit the diverse needs of real-
world applications. We design PPA metrics as rewards, enabling the
model to iteratively adjust its parameters based on feedback. Through
continuous updates to its policy, the model progressively optimizes
outputs to align with specific PPA preferences. However, this process
faces two challenges: (C1) The complex trade-off between power,
performance, and area typically demands sophisticated strategies and
human intervention, while RL needs to formally represent these trade-
offs in the reward feedback to meet different PPA objectives. (C2)
Performing PPA calculations in every iteration would significantly
slow down the model training process, as generating PPA evaluation
feedback requires logic synthesis and simulation, which are compu-
tationally intensive steps that consume significant time and resources.
One solution is to use machine learning (ML)–based models to
approximate PPA metrics, which address real-time concerns but may
lack precision. Another approach separates PPA calculations from
model training by creating an offline PPA metric dataset, which
balances computational demands with real-time requirements.

To overcome these challenges, we propose the PPA-RTL frame-
work, which constructs an offline dataset of Function Descrip-
tion⇔Reference Code pairs with PPA metrics and introduces a PPA
weighted formula to represent optimization rewards across diverse
scenarios. Integrating PPA into the hardware generation process
through RL allows models to more effectively navigate the complex
trade-offs in hardware design, such as balancing chip performance
and power consumption or optimizing the layout to reduce area
without compromising functionality.

The main contributions are outlined as follows:
1) For the first time, we optimize key post-synthesis metrics, PPA, in
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Fig. 1: PPA-RTL Framework. Existing hardware code generation LLMs primarily focus on two training methods (Pre-Training and SFT)
to acquire syntactic and functional correct output. The PPA-RTL framework focuses on post-synthesis PPA metrics to enhance hardware
generation quality. It first extracts PPA values from the Power, Performance, and Area synthesis report generated by RTL synthesis tools for
each design. Adjusting the weights of PPA generates various preference datasets that adapt to different PPA preferences, thereby obtaining
hardware code generation LLMs guided by different PPA preferences.

the context of hardware code generation using LLMs. We develop
an RL-based hardware generation framework, named PPA-RTL,
that directly integrates PPA considerations into the design process,
allowing users to prioritize one or more of these metrics based on
specific project requirements.

2) We configure various optimization objectives to reflect the com-
mon trade-offs in real-world hardware designs, such as Power-
only, Performance-only, Area-only, and their combinations (e.g.,
Power & Performance, Power & Area, Performance & Area, and
Power & Performance & Area). The experimental results demon-
strate that PPA-RTL models significantly enhance the ability to
achieve desired trade-offs, making PPA-RTL adaptable to a range
of application scenarios and project constraints. Compared to the
SFT-only model, the SFT-RL-PPA model improves Power by an
average of 20.97%, Performance by 14.68%, and Area by 29.05%.

II. BACKGROUND AND RELATED WORK

A. LLMs for Hardware Code Generation

As early as 2020, the hardware field began experimenting with
fine-tuned GPT-2 models for generating hardware designs from
natural language. DAVE [14] demonstrated the potential of language
models in automated hardware design. However, DAVE has notable
limitations: difficulties with complex, multi-task instructions, limited
generalization to tasks outside its training templates, and a restriction
on output length (1024 tokens).

After OpenAI released ChatGPT in 2022, it quickly attracted
many researchers, sparking studies on the hardware domain, primarily
focusing on two research methods: Prompt-based and SFT. Prompt-
based methods [10], [15]–[17] guide advanced general-purpose LLMs
to perform tasks within the hardware domain by providing domain-
specific knowledge as prompts, relying on powerful commercial mod-
els like GPT-4 [6] and Claude [18]. However, the inability to modify
these closed-source commercial models makes it difficult to address
hallucination issues, particularly in the hardware domain [19]. SFT
methods [8], [9], [20]–[22] train LLMs on hardware-specific datasets
consisting of functional descriptions and corresponding hardware
code to achieve higher syntactic and functional accuracy. However,
generating codes is only the first step in the IC design process,
which must also undergo logical synthesis, layout and routing, timing
analysis, and physical verification. In these stages, the post-synthesis

metrics PPA directly impact the chip’s efficiency, speed, and cost.
While SFT-based models can generate syntactically correct hardware
designs, they do not account for post-synthesis metrics, limiting their
practical applicability.

B. Reinforcement Learning from Human Feedback

In standard RLHF workflow, an LLM is modeled as a policy π,
which takes a prompt x ∈ X and generates a response a ∈ A from
the distribution π(·|x). The initial model, π0, is typically fine-tuned
on instruction-following data after pre-training [23]. The central idea
of RLHF is to train the model using relative feedback, rather than
relying on an absolute reward signal commonly used in traditional
RL. It addresses the challenge that human evaluators often struggle to
provide consistent absolute ratings but tend to be more reliable when
tasked with comparing two responses and selecting the preferred
one [24]. To formalize preference feedback, we introduce the concept
of Preference Oracle.

Definition 1 (Preference Oracle). A preference oracle P : X ×
A × A → [0, 1] is a function that, when queried with a prompt x
and two candidate responses a1 and a2, returns a preference signal.
Specifically, we can sample a binary outcome y from the Bernoulli
distribution Ber(t): y ∼ Ber

(
P
(
a1 ≻ a2|x, a1, a2

))
, if y = 1, it

indicates that a1 is preferred over a2; if y = 0, it indicates that a2

is preferred.
To simplify the learning process, it is often assumed that human

preferences can be modeled using the Bradley-Terry (BT) model, a
widely-used framework in preference learning [25].

Definition 2 (Bradley-Terry Model). Assume the existence of a
ground-truth reward function r∗. Given two options a1 and a2, the
preference probability is calculated using a sigmoid function, which
reflects the difference in reward values between the two options.
Specifically, the probability of preferring a1 over a2 given prompt
x is modeled as: P(a1 ≻ a2|x, a1, a2) = σ(r∗(x, a1) − r∗(x, a2)),
where σ(z) = 1

1+exp(−z)
is the sigmoid function, which maps the

difference in reward values to a preference probability.
Although the BT model may not fully capture the complex human

preference, it provides a reasonable approximation and has proven
to play a critical role in the development of ChatGPT [6] and
Claude [18] by combining RLHF with reward maximization.



III. METHODOLOGY

We propose the PPA-RTL framework, which leverages RL to in-
corporate feedback from post-synthesis PPA metrics, enabling LLMs
to generate hardware designs adaptable to various optimization objec-
tives. PPA-RTL addresses the limitations of existing hardware code
generation LLMs, which primarily focus on syntactic and functional
correctness. It aims to improve the quality of hardware generation and
ensure that the generated designs meet specific physical scenarios.

A. Motivation

LLMs are initially pre-trained on extensive universal datasets,
equipping them with understanding ability. Then, the pre-trained
LLM was fine-tuned on a specific task, which is IC design here,
to become a domain expert. However, achieving optimal perfor-
mance in real-world IC design involves navigating complex trade-
offs among PPA. Decisions, such as prioritizing power efficiency
over performance or balancing area constraints with power demands,
require sophisticated decision-making, which labeled data cannot
fully address. Therefore, SFT, which relies on labeled data, can not
handle the flexible optimization to achieve PPA requirements. This
leads to our first challenge: (C1) How can we design a flexible
framework that accommodates different PPA requirements?

A straightforward approach for guiding LLMs in meeting diverse
PPA requirements is to align models with preference via RL. Unfor-
tunately, real-time PPA computing contradicts the overhead of LLM
training, which raises our second challenge: (C2) How can we avoid
real-time evaluation to reduce the time delay during LLM training?

B. PPA-RTL Framework

To construct PPA-oriented flexible hardware generation LLMs, we
propose the PPA-RTL framework, which incorporates PPA metrics
into the hardware code generation stage to target different applica-
tion optimization objectives, as shown in Fig. 1. We address two
challenges as follows.

Challenges 1 (C1) Different applications require tailored opti-
mization strategies to balance power, performance, and area, while a
single optimization strategy cannot meet the requirements of various
applications. PPA-RTL needs to formally represent these trade-offs
in the reward feedback to effectively guide model parameter updates.

To address (C1), PPA-RTL formulates the hardware design gen-
eration as an RLHF workflow, denoted by ⟨π,X ,A,P⟩. Policy
π represents a hardware design generation model, with the base
model denoted as πref . Prompt set X : Each prompt x ∈ X
represents a functional description. Response set A: The response
a ∈ A is generated design from the distribution π(·|x). Preference
model P

(
a1 ≻ a2|x, a1, a2

)
provides a relative preference signal

for multiple generated designs under a specified PPA optimization
strategy. In PPA-RTL, we sample k designs from the base model
for each functional description x in the set X . RTL synthesis tool
then performs logic synthesis and simulation, resulting in reports
about power, timing, and area. By specifying an optimization strategy,
comparing PPA values, and selecting better & worse designs, the
model’s policy is updated using an RL algorithm to align outputs
more closely with the desired PPA strategy.

To accommodate various applications, we implement a flexible
approach that adjusts the weights wP , wP ′ , and wA for each objective
to simulate the priority of PPA metrics across different applications.
The preference dataset is then created by selecting better or worse
designs based on the scoring function s(x, a).

s(x, a) = −
(
wP × v′P + wP ′ × v′P ′ + wA × v′A

)

where v′P (resp. v′P ′ , v′A) represents the normalized value of power
(resp. performance, area) extracted from the post-synthesis reports.
The non-negative hyperparameters wP , wP ′ , and wA can be adjusted
to satisfy different PPA requirements. The negative sign indicates that
the objective is to minimize these metrics: lower power consumption,
higher frequency (lower critical path delay), and smaller area.

Challenge 2 (C2) Acquiring PPA values of design requires us-
ing time-consuming and computationally intensive EDA tools for
synthesis, simulation, and analysis. Each update requires performing
these steps, resulting in the inability to obtain real-time feedback
during model training. To bridge hardware design synthesis and
model training, approximate evaluation and pre-generated offline PPA
datasets provide promising methods. For the approximate method,
training an ML-based approximation model to predict PPA values can
quickly provide PPA estimates, but it has limitations in accuracy and
reliability. The cumulative error of the approximate model combined
with the randomness in LLM generation creates a dual source of
error, which may cause the model to gradually deviate from the
optimal solution during training, leading to designs that do not meet
expectations. For offline PPA datasets, using pre-generated data di-
rectly during training eliminates the intermediate steps of generating
PPA values each time, simplifying the training process. The offline
approach also allows for more accurate model optimization, as the
dataset is already precisely calculated through EDA tools, avoiding
the prediction errors associated with approximate models.

To address (C2), we construct an offline dataset with PPA values
for the training process by employing an EDA tool to map hardware
designs into gate-level netlists. The synthesis process generates three
key reports—power, timing, and area—which collectively capture the
physical and performance characteristics of the design.

1) Power Estimation: Power estimation includes dynamic power
from switching activity and static power dissipated by transistors
without activity, providing an essential view into the design’s energy
efficiency, expressed in milliwatts (mW ).

2) Performance Estimation: Performance is measured by the
number of operations executed per unit of time. Increasing the fre-
quency reduces the clock period, allowing the design to perform more
operations within the same time frame, thereby improving overall
system performance. The maximum frequency (fmax) is inversely
related to the critical path delay, as expressed by the formula:
fmax = 1/critical path delay. Therefore, performance can be
quantified by the critical path delay (measured in nanoseconds, ns):
the smaller the critical path delay, the higher the frequency, and thus,
the better the overall performance.

3) Area Estimation: The total cell area is the physical area
required by the synthesized design, including contributions from
combinational logic, sequential elements, buffers/inverters, and other
components. It reflects the cumulative area of all logic cells mapped
from the technology library, measured in square micrometers (µm2),
ensuring the design fits within layout constraints.

C. PPA-RTL Training

In Algorithm 1, training the PPA-RTL model begins with the
preference dataset generation, followed by the training phase. We
leverages the Direct Preference Optimization (DPO) [26] to update
the policy πθ .

In the preference dataset generation stage (lines 2-13), for each
functional description x ∈ X , the reference model πref generates k
candidate code samples. The samples that pass the synthesis check
are collected in the candidate code set A. From set A, the best and
worst samples, denoted as aw and al respectively, are identified based



TABLE I: Optimization objectives setting: seven common trade-offs in real-world hardware design. Preference dataset generation: the
valid subsets generated by 3, 000 function descriptions on the base model, excluding unsynthesizable and non-differentiated outputs. Model
training: loss and accuracy metrics during model training based on different training strategies (RL-only and SFT-RL).

Optimization Weights Preference dataset size RL-only SFT-RL

objectives wP wP ′ wA (|D|) Accuracy Loss Accuracy Loss

Power-Only (Power) 1 0 0 1966 0.8375 0.5352 1.0 0.0322

Performance-Only (Perf) 0 1 0 1827 0.8375 0.5356 1.0 0.0540

Area-Only (Area) 0 0 1 1936 0.8250 0.6148 0.9875 0.0408

Power and Performance (PP) 1/2 1/2 0 1808 0.7625 0.5595 1.0 0.0610

Power and Area (PowerA) 1/2 0 1/2 1927 0.8625 0.5454 1.0 0.0410

Performance and Area (PerfA) 0 1/2 1/2 1813 0.7875 0.5750 1.0 0.0683

Power, Performance, Area (PPA) 1/3 1/3 1/3 1892 0.7875 0.5444 1.0 0.0360

Algorithm 1 PPA-RTL Training
Input: Functional descriptions X = {x1, x2, ..., xn}, base model
πref , hyperparameters wP , wP ′ ,wA, sample times k, training itera-
tions T .
Output: Trained hardware generation model π∗

θ .
1: D ← ∅; πθ ← πref ▷ Initialize
2: for each x ∈ X do ▷ Preference dataset generation
3: A← ∅ ▷ Candidate code set
4: for i←1 to k do
5: ai ← πref (x)

6: if ai passes synthesis check then
7: A← A ∪ {ai}; Record vP (ai),vP ′ (ai),vA(ai)
8: Obtain v′P (ai),v′P ′ (ai),v′A(ai) with min-max normalization
9: for ai ∈ A do

10: s(x, ai)← −(wP × v′P (ai) +wP ′ × v′
P ′ (ai) +wA × v′A(ai))

11: aw ← argmaxai∈A s(x, ai); al ← argminai∈A s(x, ai)

12: if aw ̸= al then
13: D ← D ∪ {(x, aw, al)}
14: for t←1 to T do ▷ Training
15: for each (x, aw, al) ∈ D do
16: Lt(πθ)← − log σ

(
β log

πθ(aw|x)
πref(aw|x) − β log

πθ(al|x)
πref(al|x)

)
17: Update πθ via gradient descent on Lt(πθ)

18: π∗
θ ← πθ

19: return π∗
θ

on the scoring function s(x, ai) and stored in the preference dataset
D in the form of preference tuples (x, aw, al).

In the training phase (lines 14-17), the model πθ undergoes T
iterations of optimization. The implicit reward function r∗θ(x, a) =
β log πθ(a|x)

πref(a|x)
represents the preference of the current model relative

to the reference model for a given prompt-response pair. In each iter-
ation, the loss function Lt(πθ) optimizes the model by maximizing
the likelihood of preferred data aw and minimizing the likelihood of
non-preferred data al through the difference r∗(x, aw) − r∗(x, al)
Gradient descent is used to update the model parameters iteratively.
The resulting model π∗

θ can generate optimized hardware designs that
align with learned preferences.

IV. EXPERIMENTS

In this section, we validate the integration of RL with PPA metrics
to enhance the capability of hardware code generation LLMs in
meeting diverse real-world application physical demands.

A. Experimental Setup

PPA-RTL is implemented on a Linux machine with eight A100
80GB GPUs. We consider two code generation models as baselines,

Deepseek-coder [27] and RTLCoder [21]. Deepseek-coder is an open-
source code generation model closest to GPT-4-Turbo. RTLCoder
is an open-source hardware code LLM based on Deepseek-coder
with supervised fine-tuning. We use two versions of these models,
Deepseek-coder-6.7b (Original) and RTLCoder-DeepSeek-6.7b (SFT-
only), thereby exploring two distinct training strategies: 1) RL-
only: Direct reinforcement training using the Deepseek-coder-6.7b
model (Original). 2) SFT-RL: Reinforcement training based on
supervised fine-tuning RTLCoder of the original model. Additionally,
to demonstrate the applicability of our PPA-based RL approach to
various PPA scenarios, Table I designs seven optimization objectives
that reflect the common trade-offs of real-world hardware design.

B. Dataset Generation

To acquire PPA-oriented preference datasets, we leverage Synopsys
Design Compiler (DC) [28] with the TSMC 90nm CMOS technology
library to synthesize designs and adjust the weights of PPA based
on different optimization objectives in Table I. Specifically, we
sampled 3, 000 (Function Description⇔Reference Code) pairs from
the RTLCoder dataset [29]. Function descriptions were inputs for two
base models, Deepseek and RTLCoder, to generate multiple hardware
designs. For each function description, we construct five hardware
designs, including generated and reference code, and synthesize these
designs. Samples that failed to generate synthesizable designs were
filtered out. By analyzing the resulting Power, Timing, and Area
reports, we extracted power (mW ), critical path delay (ns), and area
(µm2). Based on different optimization objectives, calculate scores
for each design, filter out samples with no score differences, and then
select the maximum and minimum values to construct seven distinct
chosen-rejected preference datasets.

C. Model Training

We employ DPO to train PPA-RTL hardware generation LLMs.
DPO simplifies the traditional complexities of RLHF by leveraging
the best and worst selected responses to directly optimize the model’s
predictive capabilities. Table I shows the training loss and reward ac-
curacy for models trained with two strategies: RL-only and SFT-RL.
Loss quantifies the discrepancy between the model’s predictions and
the preferred outcomes, with lower values indicating closer alignment
with preferences. Accuracy shows the proportion of predictions that
match the preferred outcomes, with higher values indicating better
alignment with the target preferences. The SFT-RL exhibits lower
loss and higher accuracy across all optimization objectives, indicating
that SFT-based RL leads to more stable performance compared to
RL-only.



TABLE II: PPA evaluation results. The Original refers to the DeepSeek-Coder-6.7B model, while the SFT-only is a supervised fine-tuned
model based on DeepSeek-Coder-6.7B specifically for hardware code generation. Metrics Power, Perf, and A represent power (mW ),
performance (ns), and area (µm2), respectively. Each row corresponds to a hardware design from the RTLLM benchmark. Green squares
show better metric than the original model, while red squares show worse metric. The SFT-RL models are significantly better than RL-only
models in PPA improvement compared to the base model.

Model Orignal vs Orignal
GPT-4o RL-Power RL-Perf RL-Area RL-PP RL-PowerA RL-PerfA RL-PPA

Metric Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A
accu 0.055 1250.888 0.169 36.59% -0.85% 46.81% 10.39% -0.22% 7.04% 36.84% 11.14% -0.06% -0.38% -0.82% 3.49% 2.59% -0.17% -0.20% 4.76% 5.21% 1.61% 0.88% 25.95% -0.33% 4.13% 1.26% 44.78%

adder 16bit N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
adder 32bit N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
adder 8bit 0.002 16.934 0.240 -0.60% -14.09% -0.23% -0.12% -2.03% -0.06% -0.25% 0.09% -0.09% 0.00% -1.87% 0.00% -0.12% 0.00% -0.06% -0.10% -1.92% -0.01% -0.10% -1.83% -0.05% 3.17% -1.87% -0.05%

adder pipe 64bit 0.141 2773.478 0.240 -12.80% 0.00% -7.14% 0.00% -2.51% 29.34% -49.78% 5.21% -100.00% -2.05% -3.80% 44.36% 21.76% 15.28% 68.85% 9.56% -0.11% 7.78% -14.23% 14.58% 55.83% -2.27% 15.42% 42.66%
alu 0.672 6504.926 6.737 N/A N/A N/A N/A N/A N/A N/A N/A N/A 51.23% 96.29% 60.62% 30.18% 61.23% 24.40% 52.56% 85.57% 55.77% N/A N/A N/A 51.23% 96.29% 60.62%

asyn fifo N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.00% 0.00% 0.00% N/A N/A N/A 0.00% 0.00% 0.00% N/A N/A N/A 0.00% 0.00% 0.00%
calendar 0.015 496.742 0.244 -0.02% -0.37% -0.05% 10.73% -0.16% -0.03% -0.01% 2.13% -0.03% -0.04% -0.39% 12.03% -0.01% 5.16% -0.02% 3.27% -0.39% 12.03% -0.01% 15.62% -0.03% -0.02% 7.38% 15.27%

counter 12 0.004 98.078 0.265 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
div 16bit 0.164 1414.728 5.695 -3.29% -100.00% -2.03% 97.59% 95.39% 93.12% 97.59% 95.39% 93.12% 97.59% 95.39% 93.12% 97.59% 95.39% 93.12% 97.59% 95.39% 93.12% -6.01% 13.20% 34.09% 97.59% 95.39% 93.12%

edge detect 0.003 53.484 0.228 0.00% -0.13% 0.00% 3.60% -0.06% -0.01% 0.00% 2.63% -0.01% 0.00% 0.00% 1.58% 0.51% 1.75% 1.32% 2.98% -0.13% 0.00% -0.01% 10.53% 9.20% -0.01% 5.26% 1.58%
freq div 0.023 765.012 0.252 44.17% 0.79% 55.82% 79.03% 0.79% 87.59% 54.78% 0.26% 65.06% 72.75% 0.79% 82.14% 75.33% 0.79% 83.60% 66.73% 0.79% 77.07% 75.53% 0.79% 84.89% 74.80% 0.79% 82.86%

fsm 0.005 100.195 0.300 N/A N/A N/A 0.00% 20.00% -0.01% -0.02% 18.67% -0.03% -0.03% 20.00% 0.54% 42.61% 19.33% -0.03% -0.01% 18.00% 4.61% -0.03% 18.89% 2.82% 53.65% 18.67% 2.92%
JC counter 0.031 706.541 0.247 N/A N/A N/A 26.23% -0.04% -0.57% -0.43% 38.95% -0.57% -0.42% -0.04% 15.58% 25.35% -0.04% -0.57% 0.74% -0.01% -0.14% -0.42% -0.04% 1.45% 5.65% 15.09% -0.57%
multi 16bit N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

multi booth 8bit 0.070 1281.793 0.259 -2.33% -0.22% -0.99% 0.25% -0.11% -1.78% 0.25% 25.62% 2.87% 0.05% 8.29% 2.87% 12.37% 25.33% 22.13% 10.41% 12.87% 11.51% -0.35% 12.96% 13.85% 5.01% 23.78% 3.78%
multi pipe 4bit 0.055 887.645 0.261 16.11% 7.87% -0.04% -1.01% -0.22% -0.87% N/A N/A N/A N/A N/A N/A 24.64% 37.50% 15.09% N/A N/A N/A -0.92% 3.74% -0.24% 5.48% 7.87% 18.43%
multi pipe 8bit N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% N/A N/A N/A N/A N/A N/A 0.00% 0.00% 0.00% N/A N/A N/A N/A N/A N/A N/A N/A N/A
parallel2serial 0.008 211.398 0.241 22.83% 0.50% 20.23% 6.10% -0.11% -0.46% 6.10% 0.50% 2.20% 16.43% -0.02% 11.22% 24.20% 12.00% -0.25% 39.63% 0.50% 39.84% 16.39% 0.50% 21.90% 16.43% 0.50% 11.22%

pe 2.878 11053.224 0.271 0.00% 0.00% 0.00% 0.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
pulse detect 0.003 65.903 0.246 N/A N/A N/A 9.57% 0.00% 4.07% -0.01% 18.70% -0.01% -20.51% -0.04% 4.07% 6.37% 0.00% -0.01% 3.23% 0.00% 3.54% 0.00% 0.81% 1.75% 4.18% 0.81% 6.82%
radix2 div N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RAM N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% N/A N/A N/A 0.00% 0.00% 0.00%
right shifter 0.006 107.251 0.189 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

serial2parallel 0.013 356.469 0.223 20.39% -0.36% 25.38% 22.52% -0.22% 28.11% 14.72% 1.80% 18.33% 12.12% -0.36% 15.12% 13.92% -0.05% 17.22% 14.33% -0.37% 18.29% 15.03% -0.36% 18.61% 21.84% -0.23% 27.87%
signal generator 0.006 203.777 0.287 -0.01% 0.42% -0.02% 4.79% 1.11% 4.09% 3.02% 1.11% -0.02% 0.68% 1.67% 1.38% 4.05% 2.37% -0.01% 1.03% 1.25% 1.58% 0.00% 1.53% 0.48% 2.67% 20.61% 1.18%

synchronizer 0.010 196.157 0.250 -0.05% 0.00% -0.05% 0.00% 0.00% 0.00% -0.03% 5.60% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.65% -0.07% 21.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.79%
traffic light N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
width 8to16 0.030 615.812 0.250 0.00% 0.00% 5.93% 11.40% 0.00% 8.56% 7.13% 1.33% 10.21% 11.11% 0.00% 8.79% 0.00% 0.00% 5.36% 27.69% -0.04% 20.18% 11.40% 0.00% 8.56% 10.97% 0.00% 12.37%

Average Improvement Rates 5.26% -4.63% 6.24% 10.82% 4.29% 9.93% 7.72% 10.42% 4.13% 8.85% 7.97% 13.22% 13.62% 9.85% 11.78% 12.74% 8.02% 13.65% 3.89% 4.68% 10.11% 12.66% 10.97% 15.20%

Model SFT-only vs Orignal vs SFT-only
SFT-only SFT-RL-Power SFT-RL-Perf SFT-RL-Area SFT-RL-PP SFT-RL-PowerA SFT-RL-PerfA SFT-RL-PPA

Metric Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A Power Perf A
accu 0.035 738.058 0.250 36.18% -0.85% 41.00% 65.83% -0.07% 72.47% -0.89% 21.40% -2.34% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

adder 16bit 0.013 174.989 0.074 0.00% 0.00% 0.00% 31.37% -4.59% 52.69% -0.98% -10.03% -1.02% -0.06% -5.73% 30.11% -0.73% -6.59% -0.79% 57.72% -15.69% 54.78% 0.65% 33.78% 46.24% 30.44% 4.05% 66.26%
adder 32bit 0.083 550.368 4.761 0.00% 0.00% 0.00% 93.59% 98.36% 86.67% N/A N/A N/A N/A N/A N/A 56.71% 59.62% 18.65% 57.91% 58.47% 60.83% 72.47% 78.16% 63.26% 57.36% 62.63% 45.59%
adder 8bit 0.017 135.475 1.147 -0.51% -9.59% -0.23% -0.08% -4.44% 0.00% -1.19% 65.12% -0.19% 28.25% 83.65% 90.23% 79.85% 12.60% -0.63% 47.75% 45.64% 46.09% 13.45% 27.79% 7.40% 22.27% 37.25% 17.50%

adder pipe 64bit 0.831 20015.049 0.240 -25.20% 0.00% -35.49% 74.96% -100.00% 93.13% -4.31% 45.83% 93.13% 97.50% 86.25% 98.78% 64.67% -0.93% 92.74% 60.02% -13.52% 95.28% 5.69% 0.00% 99.92% 51.05% -1.91% 96.91%
alu N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

asyn fifo N/A N/A N/A N/A N/A N/A 0.00% 0.00% 0.00% N/A N/A N/A N/A N/A N/A 0.00% 0.00% 0.00% N/A N/A N/A N/A N/A N/A N/A N/A N/A
calendar 0.016 536.962 0.281 -0.04% -0.39% -0.08% 7.64% 13.52% 8.15% 0.28% 64.41% 0.39% 4.89% 10.32% 5.75% 7.42% 13.52% 7.84% 5.25% 9.11% 7.99% 24.59% 7.20% 28.69% 6.38% 13.17% 7.49%

counter 12 0.004 98.078 0.265 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.40% 9.43% 0.00% -0.40% -0.10% 5.06% 13.81% 8.30% -3.63% 68.29% 6.94% 4.88% -0.02% 5.66% 1.08% -0.25% 14.86% 10.79%
div 16bit 0.004 97.373 0.263 97.59% 95.39% 93.12% 0.00% 0.00% 0.00% -0.40% 38.10% -0.08% -0.40% -0.12% 4.40% 19.55% 7.43% -3.64% 0.00% 0.00% 0.00% -0.37% 7.43% -3.64% 0.00% 0.00% 0.00%

edge detect 0.003 53.626 0.240 0.00% -0.13% 0.00% 2.75% -0.21% -0.40% -0.06% 58.33% -0.40% 23.68% 0.00% 35.53% 8.47% -0.03% -4.02% -0.02% -0.21% 11.66% 0.00% 0.00% 0.00% -0.02% -0.21% -0.40%
freq div 0.014 364.442 0.233 41.46% 7.41% 52.36% 70.82% -0.28% -1.23% 17.56% 57.14% 27.59% 32.24% -0.10% 46.76% 53.99% 8.29% -1.23% 50.07% -0.27% 51.44% -0.04% 1.43% 29.77% 53.13% -0.16% 58.76%

fsm 0.004 80.791 0.248 10.17% 17.50% 19.37% 54.01% -0.02% 68.56% -0.02% 23.23% 17.03% 54.85% 3.03% 61.57% 0.00% 3.03% -0.01% -0.47% -0.12% -3.75% -0.36% 1.82% -3.78% 28.17% 3.03% 30.13%
JC counter 0.043 995.602 0.251 -0.43% -0.04% -0.57% 98.27% 4.38% 98.44% 0.96% 0.27% 0.00% 0.27% 0.40% 0.07% 0.47% 0.30% 0.09% 0.28% 0.40% 0.07% 1.30% 0.20% -0.01% 0.00% 0.00% 0.00%
multi 16bit 0.043 995.602 0.251 0.00% 0.00% 0.00% N/A N/A N/A 96.19% 16.33% 98.30% -0.20% 4.38% 96.88% 1.85% 2.05% 0.00% 0.28% 0.40% 0.07% 1.26% 0.00% 0.42% 0.28% 0.40% 0.07%

multi booth 8bit 0.089 1446.762 0.269 -0.69% -0.11% -0.33% 74.39% 0.19% 66.96% 41.37% 13.20% 27.62% 30.27% -0.17% 25.62% 37.39% 5.35% 30.16% 47.29% 3.62% 31.05% 37.39% 6.69% 30.16% 47.29% 3.62% 31.05%
multi pipe 4bit 0.093 1438.718 0.281 -1.34% -0.22% -1.09% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
multi pipe 8bit 0.093 1438.718 0.281 0.00% 0.00% 0.00% N/A N/A N/A 46.64% 23.20% 33.08% -0.20% 14.59% 97.84% 95.59% 14.59% -1.29% 99.83% 75.09% 99.75% 40.58% -0.16% -1.29% 99.83% 75.09% 99.75%
parallel2serial 0.006 159.466 0.240 25.03% 0.50% 24.57% 1.04% -0.05% -0.06% -1.49% 10.08% -7.37% -2.53% -1.06% 45.72% 34.45% 0.00% 37.17% 83.01% 38.33% 86.55% -0.15% 6.29% 37.17% 61.04% 38.33% 86.55%

pe 2.878 11053.224 0.271 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -42.51% 14.76% 0.20% -33.33% 0.00% 0.00% 0.00% 0.00% 0.00% -100.00% 0.00% 0.00% 0.00% 0.00% 0.00% -41.67% 0.00% 0.00%
pulse detect 0.003 66.326 0.245 7.52% 0.41% 0.00% -0.01% -0.05% 2.13% -0.03% 0.68% -0.04% -0.05% 0.00% -0.21% 14.21% 2.04% 28.99% 2.74% -0.25% 19.75% -0.05% 25.67% -0.17% 16.05% -0.55% 30.59%
radix2 div 0.035 622.574 0.186 0.00% 0.00% 0.00% 90.09% -0.61% -1.36% -0.18% 2.16% -1.44% -5.43% -0.51% 96.37% -5.43% -18.84% 24.63% 7.55% -0.57% 28.74% 96.60% 3.24% 97.17% -0.60% -0.57% 28.74%

RAM 0.002 16.934 0.210 0.00% 0.00% 0.00% -0.06% -0.38% -0.43% -1.64% 0.00% -8.57% 0.00% -0.29% 0.00% N/A N/A N/A -0.07% -0.29% 36.77% -2.07% 4.76% 20.16% 2.42% 3.17% 8.87%
right shifter 0.006 107.251 0.189 0.00% 0.00% 0.00% 43.46% -0.58% 0.00% -1.49% 39.50% 0.00% 0.00% -0.12% 21.05% 79.80% 87.70% 0.00% 37.18% -0.49% 15.43% -1.10% 26.99% 0.00% -0.39% 34.30% 15.43%

serial2parallel 0.013 317.661 0.238 0.07% -0.16% 10.89% 13.53% -0.12% 4.49% -0.25% 26.22% -0.65% -0.28% 20.54% 66.24% 52.38% 0.00% -0.64% 25.39% -5.14% 4.34% -0.11% 1.20% 8.78% 8.92% 36.86% 70.01%
signal generator 0.006 201.096 0.284 6.33% 1.11% 1.32% -0.19% 11.97% -0.39% -0.01% 2.11% -0.04% -0.01% 33.54% 46.67% -0.01% 2.25% 6.18% 11.07% -6.01% 1.94% -1.08% 27.78% 6.18% 80.72% 36.97% 3.13%

synchronizer 0.010 196.157 0.250 0.00% 0.00% 0.00% 5.18% 0.00% -0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 45.32% 5.18% 0.00% 6.33% 0.00% 0.00% 0.00% 12.13% 7.20% 14.32% 0.00% 0.00% 0.00%
traffic light 0.010 196.157 0.250 0.00% 0.00% 0.00% -0.04% 0.00% 0.00% -0.56% 2.60% -3.76% 20.98% 4.00% 26.98% 80.55% 2.81% 2.91% 0.00% 0.00% 0.00% 0.00% 0.00% 7.91% 0.00% 0.00% 0.00%
width 8to16 0.030 579.062 0.250 1.01% 0.00% 5.97% 88.01% 1.33% 89.76% 11.30% 0.71% 26.94% 45.41% 0.44% 33.59% 35.75% 2.81% 53.98% 61.49% 0.00% 66.13% 15.91% 1.78% 35.35% 1.78% 6.67% 19.05%

Average Improvement Rates 7.30% 4.11% 7.81% 32.58% 0.73% 25.58% 6.31% 20.99% 11.94% 12.31% 10.54% 40.85% 29.44% 8.25% 11.75% 24.90% 7.82% 28.79% 12.67% 11.00% 21.00% 20.97% 14.68% 29.05%

D. Experimental Evaluation

To evaluate the effectiveness of PPA-RTL models in improving
various optimization objectives, we utilize the RTLLM-v1.1 bench-
mark [30] to generate designs for each example using the advanced
general-purpose language model GPT-4o [31] and 14 models trained
through RL-only and SFT-RL methods. These generated designs were
synthesized with DC and evaluated based on power consumption,
performance, and area. Table II shows evaluation results.

• Lack of Sensitivity to PPA in Existing Models: Compared
to the original model, the current state-of-the-art model GPT-4o
lacks effective optimization for these critical post-synthesis metrics,
and the existing supervised fine-tuning hardware generation model
SFT-only has limitations in achieving comprehensive performance
improvements.

• Trade-offs Between Metrics: Optimizing a single metric can
negatively impact others. Focusing on power metric, RL-only and
SFT-RL models optimized for power (Power, PP, PowerA, and
PPA) show significant improvements compared to models that
prioritize only area or performance (Area, Perf, and PerfA) at the
expense of power.

• Balanced Optimization Across Metrics: By comprehensively
considering all metrics, the (SFT-)RL-PPA models demonstrate
superior performance in both training strategies. The SFT-RL-PPA
model improves Power by 20.97%, Performance by 14.68%, and
Area by 29.05%, on average compared to the SFT-only model.

• Design Quality Improvements with RL-based Training: RL-
based training using PPA metrics effectively improves hardware
code generation quality. Moreover, the SFT-RL models show more



TABLE III: The PPA values for the calendar task based on SFT-only
model and SFT-RL-PPA model. Performance is represented by the
critical path delay.

Model Power (mW ) Performance (ns) Area (µm2)
SFT-only 1.5884 0.29 536.9616

SFT-RL-PPA 1.4871 0.26 496.0368

significant performance improvements than RL-only models, with
more green cells across a broader range of objectives.
Fig. 2 provides a detailed comparison of the Area and Power

changes between the RL-Power model and its original model,
Deepseek, for the designs generated on the RTLLM benchmark. The
RL-Power model reduces power consumption without significantly
increasing area, showcasing its ability to balance power and area
trade-offs effectively.

E. Case Study

In this case study, we provide a detailed analysis of the designs gen-
erated by the PPA-RTL models before and after optimization, using
the design of a calendar module as an example. The calendar
module has two inputs: CLK (clock) and RST (reset). It includes
three variables: Secs, Mins, and Hours, all initialized to zero.
Each clock cycle, Secs increments by one. When Secs == 59,
Mins increments, and Secs resets. When both Secs == 59
and Mins == 59, Hours increments, and both Secs and Mins
reset. This cycle continues until Hours == 23, Mins == 59, and
Secs == 59, after which all values reset.

Table III compares the PPA values of the calendar designs
generated by the SFT-RL-PPA model and its base model SFT-only
model. Through RL targeted at Power & Performance & Area, the
SFT-RL-PPA model effectively balances power, performance, and
area requirements. To further analyze model differences, Table IV
provides the designs generated by both models.

TABLE IV: The calendar module designs generated by SFT-only
model and SFT-RL-PPA model.

SFT-only model SFT-RL-PPA model

always @(posedge CLK or posedge RST)
begin

if (RST) begin Secs <= 6’b0; end
else if (Secs == 6’d59) begin Secs

<= 6’b0;end
else begin Secs <= Secs + 1; end

end
always @(posedge CLK or posedge RST)

begin
if (RST) begin Mins <= 6’b0; end
else if (Mins == 6’d59 && Secs ==

6’d59) begin Mins <= 6’b0;
end

else if (Secs == 6’d59) begin Mins
<= Mins + 1; end

end
always @(posedge CLK or posedge RST)

begin
if (RST) begin Hours <= 6’b0; end
else if (Hours == 6’d23 && Mins ==

6’d59 && Secs == 6’d59)
begin Hours <= 6’b0; end

else if (Mins == 6’d59 && Secs ==
6’d59) begin Hours <= Hours
+ 1; end

end

always @(posedge CLK or posedge RST)
begin

if (RST) begin Secs <= 0; Mins <=
0; Hours <= 0; end

else begin
if (Secs == 59) begin
Secs <= 0;

if (Mins == 59) begin
Mins <= 0;
if (Hours == 23) begin

Hours <= 0; end
else begin Hours <= Hours

+ 1; end end
else begin Mins <= Mins + 1;

end
end else begin Secs <= Secs +

1; end
end

end

The SFT-only model uses three separate always blocks to manage
updates for seconds, minutes, and hours, respectively. The processing
logic for different time units is separated, enabling the logic clearer
and the code easier to manage and expand. However, since the
time units are scattered in different always blocks, potential race
conditions may arise due to execution order. For example, updating
Secs to zero might occur slightly before updating Mins. This
brief delay could result in the minute and hour logic not detecting

Fig. 2: The comparison of power and area between Deepseek
(original model) and RL-Power (RL model based on Deepseek,
optimized for Power) in RTLLM benchmark. The x-axis represents
power consumption, and the y-axis represents area. Arrows indicate
the performance shift from the original model (blue) to the RL-Power
optimized model (gray) for the same design.

TABLE V: The Syntax and Function accuracy on the RTLLM-v1.1
(pass@5) between the SFT-only model and SFT-RL models.

SFT-only SFT-RL
Power Perf Area PP PowerA PerfA PPA

Syn.(%) 93.1 93.1 96.6 89.6 93.1 86.2 96.6 93.1RTLLM-v1.1
pass@5 Func.(%) 48.3 48.3 44.8 41.4 44.8 44.8 48.3 41.4

Secs as 59 in a given instant, preventing the intended increment.
During logical synthesis, we observe this change that Hours[0]
and Mins[0] are at 0.29ns on critical path delay, while Secs[0]
is at 0.28ns. The SFT-RL-PPA model updates of Secs, Mins, and
Hours are completed in the same logical condition, and their updates
are synchronized with each other. When Secs reaches 59 and resets
to 0, Mins and Hours are updated within the same clock cycle.
Concentrating the update logic within a single block reduces potential
jitter caused by signal propagation between different always blocks,
ensuring the atomicity of the update operations and avoiding potential
race conditions.

V. DISCUSSION

Although the PPA-RTL framework effectively achieves optimiza-
tion goals tailored to different application scenarios, it is essential
to evaluate whether integrating PPA into the hardware generation
model affects the original model’s code generation accuracy. We
assess the syntactic and functional accuracy of the SFT-RL-based
models on the RTLLM benchmark. Table V compares the SFT-RL
models with its base model SFT-only. For syntactic accuracy, the
SFT-RL models maintain the same or higher accuracy across five op-
timization objectives, as syntactically incorrect designs were filtered
when selecting preference data based on PPA values, which benefits
syntactic correctness. Two models retain their original accuracy levels
for functional accuracy, while the other five models show a slight
decrease of less than 7%. Overall, PPA-RTL can maintain the original
model’s accuracy within a limited error.

VI. CONCLUSION

In this paper, we propose PPA-RTL, a novel approach to align
hardware code generation LLMs with variable power, performance,
and area requirements. In experimental evaluation, PPA-RTL demon-
strates significant improvements compared to traditional LLM-based
hardware design, providing a flexible framework for balancing
performance, efficiency, and resource usage. Our work paves the
way for more adaptive, efficient, cost-effective IC design automated
processes.
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