
Intelligence In The Fence: Construct A Privacy and Reliable
Hardware Design Assistant LLM

Shijie Li
University of Science and Technology

of China
Hefei, Anhui, China

shijie_li@mail.ustc.edu.cn

Weimin Fu
Kansas State University
Manhattan, Kansas, USA

weiminf@ksu.edu

Yifang Zhao
University of Science and Technology

of China
Hefei, Anhui, China

zhaoyifang@mail.ustc.edu.cn

Xiaolong Guo
Kansas State University
Manhattan, Kansas, USA
guoxiaolong@ksu.edu

Yier Jin
University of Science and Technology

of China
Hefei, Anhui, China
jinyier@ustc.edu.cn

Abstract
Large language models (LLMs) have been widely used for code
assistance in the software and hardware domains. The trend of
training a local model for code generation is growing because of
the security concerns of releasing proprietary data to third-party
providers. However, due to the lack of high-quality training datasets
in the hardware domain, researchers have to rely on commercial
LLMs, facing the issue of training data leakage. This paper adheres
to the principle of zero data upload to address data privacy con-
cerns. Instead of commercial LLMs, we propose a localized and
transparent solution leveraging local LLMs to synthesize data and
eliminate data leakage risks. We propose an innovative approach to
constructing high-quality data by interpretation. To enable efficient
local deployment, we fine-tune compact open-source LLMs. The
proposed training process and the new dataset structure help us
locally train a hardware design assistant LLM named PrivacyGen.
PrivacyGen outperforms GPT-4 in the VerilogEval [21] benchmark
and performs similarly to GPT-4 in RTLLM [24] benchmark while
exhibiting a significantly smaller model size and lower total cost of
ownership.

CCS Concepts
• Hardware → Software tools for EDA; • Computing method-
ologies → Supervised learning by regression.

Keywords
Domain-Specific Large Language Model, Verilog Code Generation,
Dataset Construction, Data Privacy

ACM Reference Format:
Shijie Li, Weimin Fu, Yifang Zhao, Xiaolong Guo, and Yier Jin. 2025. Intel-
ligence In The Fence: Construct A Privacy and Reliable Hardware Design
Assistant LLM. In Great Lakes Symposium on VLSI 2025 (GLSVLSI ’25), June

This work is licensed under a Creative Commons Attribution 4.0 International License.
GLSVLSI ’25, New Orleans, LA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1496-2/2025/06
https://doi.org/10.1145/3716368.3735172

30-July 2, 2025, New Orleans, LA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3716368.3735172

1 Introduction
The advent of ChatGPT [26] has broadened the application of
LLM intelligence beyond natural language processing to various
fields, among which hardware code generation has become a valu-
able and popular scenario for LLMs. LLMs have been utilized for
design verification [14], debugging [13], and generation. Specif-
ically, efforts in hardware design generation can be categorized
into three approaches: constructing complex prompts to guide
general LLMs [4, 24], building foundational models through pre-
training [12], and developing domain-specific LLMs through su-
pervised fine-tuning (SFT) [9, 20–22, 33–35]. However, these ap-
proaches face challenges such as high training/fine-tuning costs,
security & privacy concerns, and performance issues.

To be precise, constructing prompts to guide general LLMs in
design creation faces all these issues despite offering a comprehen-
sive solution. First, in terms of cost, prompt-based methodologies
rely on complex prompts to enhance performance. However, these
prompts may unintentionally introduce flaws or errors that LLMs
may not identify and correct, leading to incorrect hardware de-
sign. It takes a lot of human labor to design and check intricate
prompts. Additionally, all API usage incurs fees, making the To-
tal Cost of Ownership (TCO) uncontrollable and leading to high
costs [31]. Regarding security and privacy, transmitting hardware
design parameters and source code in plaintext using commercial
LLMs may leak sensitive data. Regarding performance, general
LLMs are not explicitly designed for hardware code generation and
lack specialized knowledge, often resulting in designs that cannot
be synthesized or functionally verified [28].

On the other hand, building foundational models lacks the
large-scale hardware domain pretraining dataset to support high-
performance models [12]. Building domain-specific LLM via SFT
has become a popular solution. For SFT tasks, there are four com-
ponents: the foundational model (e.g., Llama [2]), the fine-tuning
method (e.g., LoRA [17]), the fine-tuning dataset, and the training
platform. In hardware-related tasks, since the foundational model,
the fine-tuning method, and the training platform are consistent
with those used in general LLM training, the primary focus is on

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3716368.3735172
https://doi.org/10.1145/3716368.3735172


GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Shijie Li, Weimin Fu, Yifang Zhao, Xiaolong Guo, and Yier Jin

the fine-tuning dataset. However, constructing datasets in the hard-
ware domain is particularly challenging. The high barriers to entry
in the hardware field result in much less active open-source com-
munities than their software counterparts. Emulating the software
field’s approach to building LLMs based on open-source knowledge
becomes challenging. Solutions to this dataset problem and their
limitations can be categorized into four approaches, each illustrated
by typical works below.
• ChipNeMo [20]: NVIDIA possesses a vast hardware dataset as a
commercial entity. Although not publicly accessible, it demon-
strates the feasibility of implementing hardware domain-specific
LLMs.

• VeriGen [33]: Utilizing code from GitHub and textbooks. Due to
its unlabeled nature, it can only be a copilot, limiting its usage.

• RTLCoder [22]: Constructing a 27k dataset using randomly gen-
erated prompts and ChatGPT-3.5. Similar works in the gen-
eral domain show poor LLM performance using only synthetic
dataset [29]. Relying on online LLMs to build the dataset will
increase the exposure of sensitive data. This method also vio-
lates OpenAI’s restrictions on using ChatGPT-generated data for
training, posing legal risks [27].

• Accelerator Generation [25]: Leveraging the enumerable nature
of programmable circuits within accelerators, exhaustively listing
all potential possibilities. However, it targets only one type of
programmable circuit.
To address these shortcomings, we propose PrivacyGen, a spe-

cialized hardware code generation assistant that is a fully local-
ized, transparent, and open-source solution. We developed a
code interpreter using a local LLM and pre-configured templates to
label hardware design datasets through interpretation and trans-
lation. This allows us to ensure privacy, avoid restrictions from
commercial LLM providers such as OpenAI, and reduce costs. By
hierarchically interpreting the code’s functionality and implemen-
tation, we create a dataset with 25, 000 high-quality labeled samples
and then fine-tune the open-source LLM, Llama3. We validate the
generated PrivacyGen on independent benchmarks, demonstrating
state-of-the-art performance among open-source and commercial
LLMs. The entire construction process of PrivacyGen can be con-
ducted in a local environment without transmitting any data to
external entities. Our main contributions are listed as follows.
• Compared to previous work that relies on commercial LLMs,
we propose a privacy and reliable solution for LLM-based hard-
ware design assistants. The framework proposed is localized and
transparent, protecting data privacy.

• We propose a novel dataset construction approach using a hierar-
chical interpretation of hardware designs as labels. This method
simplifies dataset creation, enabling offline LLMs for primary
automation. Our dataset is based on real hardware data, and we
annotate unordered datasets, maintaining the dataset quality.

• We fine-tune Llama-3-8B and Llama-3-70B using our dataset.
Specifically, we use quantization fine-tuning for the Llama3 70B
model. Benchmark testing shows that our model’s performance,
particularly on complex designs, is similar to that of GPT-4 and
beyond that of other state-of-the-art open-source LLMs. We plan
to open-source PrivacyGen to the research community to inspire
further research and development in related areas.

2 Background
2.1 LLMs for Hardware Code Generation
Table 1 provides an overview of existing works on the automatic
generation of RTL code based on LLMs. It summarizes the compari-
son between existing works and our work, including methodology,
openness, performance of the model, and dependence on commer-
cial models.

Table 1: LLMs for automatic RTL code generation.

Works Method
Dataset Synthesize Data Outperform
Available Based on GPT GPT-3.5

Chip-chat [4], RTLLM [24], Prompt
N/A N/A N/A

AutoChip [35] Engineering

VeriGen [33, 34] Fine-tuning Yes No No

RTLcoder [22] Fine-tuning Yes Yes Yes

VerilogEval [21] Fine-tuning No Yes Comparable

ChipNeMo [20]
Pretraing, RAG,

No No Comparable
Fine-tuning

PrivacyGen(Our Work) Fine-tuning Yes No Yes

Some early works [4, 24, 35] adopted prompt engineering meth-
ods based on constructing prompts to guide general LLMs. These
studies highlight the significant potential of LLMs in hardware-
domain tasks but also raise concerns such as prompt engineering
effort, data privacy, general LLM limitations, and cost considera-
tions.

VeriGen [33, 34] collected hardware code from GitHub and text-
books to fine-tune the model directly. It filters the collected files
to obtain Verilog files but does not contribute to enhancing the
dataset’s quality, thereby limiting its application area and perfor-
mance. While PrivacyGen meticulously processes the raw dataset
and generates high-quality labels of functionality description.

ChipNeMo [20] from NVIDIA built their own Verilog training
dataset and used Domain-Adaptive Pre-Training, supervised fine-
tuning, and retrieval-augmented generation (RAG) methods to en-
hance the Verilog generation capabilities of LLM. They have com-
parable performance with GPT-3.5, but their datasets and models
are not publicly available. In contrast, PrivacyGen is open-source
and outperforms GPT-3.5.

RTLCoder [22] constructed a 27𝑘 dataset and introduced a new
LLM solution for generating RTL code, outperforming GPT-3.5. The
synthetic dataset used for training relies on an external commercial
model, GPT-3.5. Furthermore, it uses random prompts as labels and
entirely synthetic data for training, which limits the diversity of
data and model performance. However, PrivacyGen is established
locally based on open-source tools under the protection of the
firewall. We generate design descriptions using a localized code
interpreter rather than commercial models. Moreover, our RTL
dataset is derived from actual hardware projects, ensuring data
diversity.

2.2 Data Privacy Concerns for Remote LLMs
The use of commercial LLMs in handling client data introduces
significant risks to data privacy. When private or proprietary data
is used to fine-tune or prompt a commercial LLM, the data will be
exposed directly to the LLM provider. Furthermore, LLM providers



Intelligence In The Fence: Construct A Privacy and Reliable Hardware Design Assistant LLM GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

(a) Client Making an API Request

(b) Backend Revealing Client Input

Figure 1: Client Input Exposure in Remote LLM Backend

can use the data input by clients to improve their models, which
can pose a greater risk to the data of clients. Samsung Electronics
has imposed a ban on the use of generative AI tools like ChatGPT,
Google Bard, and Bing AI by its employees. The move follows an in-
ternal incident where an employee allegedly uploaded confidential
source code to ChatGPT. Many other tech companies, including Ap-
ple, JPMorgan Chase, and Amazon, have also implemented similar
restrictions to protect their intellectual property.

When utilizing the Web services or APIs of commercial LLMs,
clients must send their queries to external providers. Regardless
of the security measures implemented, LLMs inherently require
plaintext input to process requests, and their output inevitably
includes the original input content. As illustrated in Figure 1, when
invoking an LLM deployed via Huggingface backend, the original
input text remains visible in the system’s backend.

Cloud service providers are increasingly supporting the remote
deployment of LLMs, enabling these models to be hosted on cloud
platforms where client-provided data is processed and stored. A
critical concern associated with this approach is the potential lack
of absolute data confidentiality. Although many cloud providers
assert the implementation of robust security measures, there re-
mains a risk of unauthorized access to sensitive data by internal
actors, whether due to malicious intent or negligence. Additionally,
inherent vulnerabilities within the cloud infrastructure may further
expose user data to external threats, posing significant security
risks.

2.3 Private LLM Inference
Fully Homomorphic Encryption (FHE) is a promising solu-
tion that enables computation on encrypted data without revealing

the plaintext and only outputs the encrypted result. This prop-
erty makes it suitable for LLM inference, ensuring that cloud ser-
vice providers cannot access the plaintext of clients’ data. Cryp-
toNets [15] has successfully applied FHE to neural networks. How-
ever, existing FHE schemes, such as BGV [23] and CKKS [6], face
significant challenges in LLM inference [7]:

• The computation of LLMs is already very expensive. However,
FHE operations are significantly slower than their plaintext coun-
terparts, leading to substantial computational overhead.

• FHE primarily supports addition and multiplication, whereas
transformer networks require nonlinear transformations like
GELU, softmax, and LayerNorm, which necessitate complex ho-
momorphic approximations, leading to trade-offs in both effi-
ciency and accuracy. [6]

Secure Multi-Party Computation (SMPC) enables multiple
participants to collaboratively compute a function’s output without
revealing their individual input data. The input data is partitioned
into multiple shares, with each participant holding a portion. In
the context of large language model (LLM) inference, SMPC can
be utilized to ensure that user input data remains hidden from the
model provider. However, SMPC also faces several challenges:

• SMPC operations, such as secure additions and multiplications
via secret sharing or garbled circuits, are much slower than plain-
text operations. Additionally, secret sharing protocols require
communication for each operation, making them 10×–1000×
slower, depending on the protocol and network conditions [11].

• Certain complex nonlinear operations, such as activation func-
tions and Softmax, are computationally inefficient within the
SMPC framework [18].

Trusted Execution Environments (TEEs) provide a secure
enclave for executing computations while ensuring confidential-
ity and integrity, making them a promising solution for deploying
LLMs in untrusted environments. By isolating model execution
from the host system and cloud provider, TEEs can protect user
inputs and prevent unauthorized access to model parameters. How-
ever, it faces several critical challenges. First, TEEs have stringent
memory and computational constraints, making it difficult to ac-
commodate the large-scale operations required for LLM inference.
Second, the lack of native support for hardware acceleration, such
as GPUs or TPUs, significantly degrades the efficiency of neural
network computations within TEEs [16].

2.4 Local LLM Deployment
With the open-sourcing of DeepSeek-R1 [8], the LLMs as powerful
as GPT-o1 can be deployed locally, providing greater control over
data privacy. However, deploying a large-size model poses substan-
tial computational challenges. For example, deploying DeepSeek R1
671B for local inference requires approximately 1,500 GB of GPU
memory. It renders such deployments impractical for users with
constrained infrastructure. As a result, achieving an optimal balance
between model size, computational efficiency, and deployment fea-
sibility has become a crucial factor in the adoption of locally hosted
LLMs. A small-scale local LLM is the most practical approach at
present. Although small-scale models exhibit inferior overall per-
formance, their capabilities in specific domains can be enhanced



GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Shijie Li, Weimin Fu, Yifang Zhao, Xiaolong Guo, and Yier Jin

to achieve performance comparable to or even surpassing that of
large-scale general models.

2.5 Hardware Private Data
Unlike software, hardware designs typically require significant in-
vestment in research, verification, and fabrication, making their
confidentiality paramount. Engineers and organizations want to
leverage LLMs to assist and accelerate the hardware development
process while ensuring that proprietary hardware data remains pro-
tected. A viable solution is to train and deploy an LLM in a secure,
on-premises environment using private datasets. By conducting
model training and inference locally, companies can maintain full
control over data access andmitigate the risk of information leakage
associated with cloud-based or third-party LLM services. Addition-
ally, fine-tuning LLMs on domain-specific hardware design data
enhances their ability to generate high-quality HDL code, optimize
circuits, and automate verification tasks.

Since we do not have a private hardware dataset, we use open-
source data to simulate the private data. We gather 182, 964 hard-
ware designs from 4, 704 GitHub and OpenCore projects. In the
following sections, we refer to these designs as the private dataset.

3 Methodology
Fig. 2 illustrates the overall structure of the PrivacyGen construc-
tion process. The proposed framework can operate entirely offline,
ensuring that all processes, including dataset construction, model
training, and model usage, are conducted inside the firewall.

3.1 Data Cleaning
As shown in process 1 , we preprocess the private dataset to con-
struct a high-quality RTL code dataset. The preprocessing begins
with deduplication, where each code snippet in the private dataset
is tokenized, and a SHA-1 hash of the resulting token sequence
is computed while disregarding whitespace and comments. Code
snippets with identical hash values are identified as duplicates and
subsequently removed. Following this deduplication process, we
obtained a total of 68, 567 unique designs.

On the other hand, hardware designs include macros and cross-
references. If the model assimilates these designs, the model may
use instances of unknown modules when generating a hardware
design. To ensure each design in the dataset is independent, we use
Yosys [36]. A customized script is developed to perform abstract
syntax tree construction and code generation, converting the hard-
ware designs into an RTLIL intermediate representation. Macros
and cross-references are then expanded into their target locations.
Additionally, Yosys filters out syntactically incorrect designs and
removes comments to ensure dataset quality. Consequently, the
script utilizes the Yosys Verilog backend to export the design in
Verilog. The size of the dataset was further reduced due to Yosys’s
limited language support, which cannot support all designs in the
raw dataset.

After preprocessing, the dataset comprises 25, 199 unique hard-
ware designs.

Figure 2: The Overall Framework of Constructing Privacy-
Gen.

3.2 Fine-tuning Dataset Constuction
The RTL code dataset alone cannot directly support LLM fine-
tuning. To build an SFT dataset, we need to follow these steps:
constructing inputs for the local LLM 2 , including hardware de-
signs and detailed hierarchical prompts; organizing the three dif-
ferent outputs into a comprehensive raw dataset 3 ; and building
the fine-tuning dataset based on these results 4 .

To obtain a simple, yet comprehensive description of function-
ality, steps 2 and 3 accomplish the following tasks. First, they
provide a high-level overview of the hardware design’s functional-
ity in natural language. Second, they specify the I/O ports of the
hardware design, ensuring clear communication with other mod-
ules. Third, they offer a detailed natural language description of
the hardware design process, including step-by-step explanations,
algorithmic details, and design considerations. This comprehen-
sive approach aids in understanding the purpose, operation, and
internal structure of complex hardware designs.

The quality of data generated based on LLM is directly related
to the performance of the LLM and the prompt design. Although
the local LLM underperforms commercial models such as ChatGPT
due to model size and training data scale, we still deploy open-
source LLM locally for interpreting code to ensure that the entire
process is carried out locally with the protection of the firewall.
Compared to generating hardware design from design description
(such as RTLCoder), summarizing functional description from code
is easier, which local LLMs are competent for. Our designed prompt
guides the LLM to perform multi-level analysis for a more accurate
understanding of code functionality, bridging the performance gap.

We employed the Nemotron-4-340B Instruct [1], which is the best
open model for synthetic data generation originating from NVIDIA.
A typical prompt is shown in Fig. 3, which instructs Nemotron



Intelligence In The Fence: Construct A Privacy and Reliable Hardware Design Assistant LLM GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

[prompt]
Analyze the provided Verilog code to determine:
1. Circuit Functionality: Explain the purpose and overall function 
of the circuit described by the code.
2. Module Name and Ports: Identify and describe the module name, 
input, output, and inout ports, including their data types and 
significance.
3. Implementation Steps: Summarize the main processes, modules, 
or components in the code and how they interact to achieve the 
desired functionality.
<Insert Verilog code here>
module sqrt_pipelined
(

input clk,
input reset_n,
input start,
input [INPUT_BITS-1:0] radicand,
output reg data_valid,
output reg [OUTPUT_BITS-1:0] root

);
/* Collapse for Space */

endmodule

Figure 3: Example of a Pipelined Square Root Module

to achieve the three tasks step by step according to the hardware
design code.

To construct a comprehensive LLM fine-tuning dataset 4 , we
create a dataset made up of Question-Answer pairs, where the
“Question” serves as the input instructing the LLM to generate the
hardware design, and the “Answer” is the Verilog implementation
of the hardware design. In our fine-tuning dataset, Questions con-
sist of the Functionality Description and I/O Ports. Meanwhile,
Answers include the Implementation Steps and the preprocessed
raw hardware design obtained in Subsection 3.1.

3.3 Fine-tuning and Evaluation
In Section 3.2, we build the fine-tuning dataset. We choose open-
source pre-trained LLM as the base model and LoRA as the fine-
tuning technique, which is more efficient and saves a lot of com-
puting resources compared to Full Fine-tuning. To preserve the
base model’s performance [3], we selectively fine-tuned only the
𝑄𝑢𝑒𝑟𝑖𝑒𝑠 and𝑉𝑎𝑙𝑢𝑒𝑠 matrices within the self-attention blocks while
keeping the 𝐾𝑒𝑦 matrices and other parameters unchanged.

For the evaluation, we utilize simulation to verify the syntax and
functionality correctness of LLM’s response. As shown in 6 and
7 , the validation relies on LLM input and testbench design. So, for
the sake of fairness and convenience of data comparison, we chose
to use the testbench built by VerilogEval [21] and RTLLM [24].

4 Experiment
This section details the construction of the fine-tuning dataset. Next,
two Llama models are fine-tuned using this dataset. Experiments
are then set up to evaluate their performance.

4.1 Dataset Construction
We construct a 25𝑘 high-quality fine-tuning dataset following the
process 4 . Fig. 3 4 5 show an example of generating data from the
raw dataset, corresponding to processes 2 and 3 .

Specifically, the Nemotron-4-340B Instruct is deployed locally,
and prompt templates are applied. This AI system serves as a code
interpreter, analyzing the code from the raw dataset.

For example, Fig. 3 shows a square root calculation module from
the preprocessed raw dataset, along with the prompt template to
instruct the code interpreter. Fig. 4 5 shows the Functional Descrip-
tion(1), Input/Output ports(2) and Implementation Steps(3).

1. Circuit Functionality
This is a pipelined square root computation circuit. It computes the 
integer square root of a given input (`radicand`) using an iterative 
subtraction-based algorithm. It incorporates a multi-stage pipeline to 
efficiently compute the square root over several clock cycles.

2. Module Name and Ports
Module Name: sqrt_pipelined
Inputs:
- `clk`: Clock signal to synchronize operations. Bit width: 1.
############Collapse for Space########

Figure 4: Functionality and Ports of Module in Fig. 3

• Functionality Description: LLMs tend to interpret code line by
line rather than provide high-level semantic information about
functionality. But as shown in Fig. 4, with the assistance of de-
veloped prompt templates, Nemotron accurately abstracts that
the module is a pipelined square root computation circuit.

• Input and Output Ports: Extracting ports is easy, but analyzing
their role in the design is difficult. In Fig. 4, Nemotron correctly
understands all port functionalities and identifies the associa-
tion between the input/output port (radicand, root) and constant
parameters based on internal design information.

• Implementation: Analyzing the implementation process re-
quires LLM to be able to reasonably segment the code and summa-
rize the function of each code snippet. Fig. 5 shows that Nemotron
uses a hierarchical structure to detail the hardware design’s con-
ceptual elements in natural language. It describes the module
implementation process and the adopted algorithm in five steps.
In total, the dataset contains 25, 199 items and 22, 124, 325 tokens.

4.2 Model Training
We selected Llama-3-8B and Llama-3-70B [2], which boasts ad-
vanced general capabilities and programming performance, as the
foundational model for finetuning. Their context length is 8, 192,
which is sufficient to accommodate all data instances in our dataset.
We set the truncation length to 4, 096 in our fine-tuning.

The hardware, software, LoRA parameters, and deep learning
optimizer configuration of the fine-tuning experimental platform
are detailed in Table 2. Additionally, we employed DeepSpeed ZeRO-
3 [30] to implement multi-GPU parallelism, distributing segments
of model parameters, optimizer state, and gradients to three GPUs.
For the Llama-3-8B model, we used BF16 mixed-precision for fine-
tuning, which takes up 12GB of VRAM per GPU (36GB). For the



GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Shijie Li, Weimin Fu, Yifang Zhao, Xiaolong Guo, and Yier Jin

Table 2: Hardware and Software Platforms and Training Configuration

Hardware Platform Software Platform LoRA Configuration Training Optimizer: Adam

CPU Memory GPU OS Pytorch Transformers 𝑅 𝛼 dropout Learning Rate Warmup 𝛽 𝜖 learning rate

Intel(R) Xeon(R) Silver 4310 512GB 3* Nvidia A100 40 Ubuntu 18.04.6 LTS 2.3.0 4.40.2 8 16 0.05 100 steps (0.9, 0.999) 1𝑒 − 8 1𝑒 − 4

3. Implementation Steps
1. Initialization and Parameterization:

- `OUTPUT_BITS` is derived from `INPUT_BITS` to ensure the 
correct bit width for the square root.
############Collapse for Space########
2. Pipeline Stage Implementation:

- The design uses a `generate` block to instantiate multiple 
pipeline stages (`OUTPUT_BITS - 1` stages).
############Collapse for Space########
3. Mask Generation:

- A `genvar` loop generates masks for each stage:
############Collapse for Space########
4. Control Logic:

- The `start_gen` register propagates the `start` signal through the 
pipeline to synchronize operations.
############Collapse for Space########
5. Output Assignment:

- `data_valid` is set when the pipeline computation completes, 
based on the final stage of `start_gen`.
############Collapse for Space########

Figure 5: Implement Steps of Module in Fig. 3

50 150 250 350 450 550 650 750

0.3

0.35

0.4

Supervised Fine-Tuning Training Steps

Lo
ss

(c
hu

nk
ed

cr
os

s-
en

tr
op

y) Llama 3 8B Training

Llama 3 8B Evaluation

Llama 3 70B Training

Llama 3 70B Evaluation

Figure 6: Training and Validation Loss During Supervised
Fine-Tuning Training

70B version, we opt for quantization [10] for fine-tuning, mapping
BF16 mixed-precision parameters to normalized float 4-bit (NF4) to
optimize computational efficiency, only consuming 20GB of VRAM
per GPU (a total of 60GB). We trained them for 3 epochs on the
dataset and fixed the batch size at 96. Our platform can train models
at a speed of 0.854 samples(Llama-3-8B) and 0.361 samples(Llama-
3-70B-4bit) per second, and it took a total of 1 day, 19 minutes, 47
seconds and 2 days, 9 hours, 33 minutes, 11 seconds, respectively.

Fig. 6 presents the loss variations on the training and test sets dur-
ing training. The loss represents the discrepancy between predicted
outputs and actual values. The decrease in loss during training
represents LLMs assimilating the information provided by the fine-
tuning dataset. A plateau in the loss after 550 steps indicates that

further training may not significantly improve the model’s perfor-
mance on unseen data. Despite employing quantization techniques,
the 70B model consistently outperformed the 8B model.

4.3 Experiment Setup
We compare our fine-tuned models’ performance on two represen-
tative benchmarks, VerilogEval [21] and RTLLM [24], with prior
works. VerilogEval consists of two parts: Eval-Human with 156
questions and Eval-Machine with 143 questions. VerilogEval mea-
sures the Verilog generation accuracy using the 𝑝𝑎𝑠𝑠@𝑘 [5] metric
as shown in Equation 1.

𝑝𝑎𝑠𝑠@𝑘 =
1
𝑁

𝑁∑︁
𝑖=1

(
1 −

𝐶𝑘𝑛−𝑐𝑖
𝐶𝑘𝑛

)
(1)

where N is the total number of problems, n is the number of code
candidates generated for each problem, and 𝑐𝑖 is the number of
candidates for the 𝑖-th problem that pass syntax or functionality
checks. In our experiment, we set 𝑛 = 20 and 𝑘 = {1, 5, 10}. For
hyperparameters, we set 𝑡𝑜𝑝𝑝 = 0.9 and select the best performance
among 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = {0.2, 0.5, 0.8}.

RTLLM contains 29 RTL generation problems. Following the
instructions, we generate five candidate Verilog codes for each
problem and report the correctness rate. The problem is considered
passed if at least one trial passes the syntax and function check. We
also use the same version of Synopsys-VCS [32] with RTLCoder
and the evaluation method mentioned in Subsection 3.3 in our
experiments.

To evaluate the model’s generalization ability on unseen data,
we remove the data similar to the benchmarks. We check the simi-
larity between the samples in our dataset and the test cases in the
benchmarks based on the Rouge-L metric and remove the samples
with Rouge-L greater than 0.5 from the dataset.

5 Experimental Results
5.1 PrivacyGen’s evaluation on the benchmarks
Table 3 summarizes the comparison results of PrivacyGen and base-
lines on VerilogEval and RTLLM v1.1 benchmarks. The baselines
include (1) closed-source or commercial models: GPT-3.5, GPT4,
ChipNeMo [20], and VerilogEval[21]; (2) open-source models: Veri-
Gen [34], Starcoder [19], RTLCoder [22], and our foundational
models Llama-3-8B and 4-bit quantized Llama-3-70B.

In the VerilogEval benchmark, PrivacyGen-Llama3-70B-4bit out-
performs all other methods, and PrivacyGen-Llama3-8B performs
close to RTLCoder. PrivacyGen-Llama3-70B-4bit achieves 69.2% in
Eval-machine and 49.1% in Eval-human in 𝑝𝑎𝑠𝑠@1, significantly
outperforming GPT-4. They are 9.2% and 5.6% higher than GPT-4,
which has the best performance in baselines.

In the RTLLM benchmark, PrivacyGen-Llama3-8B fails one more
case than RTLcodeer, but PrivacyGen-Llama3-70B-4bit achieves



Intelligence In The Fence: Construct A Privacy and Reliable Hardware Design Assistant LLM GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

Table 3: Comparison of PrivacyGen with baseline models in the VerilogEval [21] benchmark and RTLLM [24] v1.1 benchmark.

VerilogEval [21](using 𝑝𝑎𝑠𝑠@𝑘) RTLLM v1.1 [24]
Eval-Machine(%) Eval-Human(%) (using 5-𝑠ℎ𝑜𝑡)Model Type Model Params

k=1 k=5 k=10 k=1 k=5 k=10 Syntax-VCS(%) Func(%)

GPT-3.5 175B 46.7 69.1 74.1 26.7 45.8 51.7 89.7 37.9
GPT4 N/A 60 70.6 73.5 43.5 55.8 58.9 100 65.5

ChipNeMo[20] 13B 43.4 N/A N/A 22.4 N/A N/A N/A N/A
Closed-Source

VerilogEval[21] 16B 46.2 67.3 73.7 28.8 45.9 52.3 N/A N/A

Verigen[33] 16B 44.0 52.6 59.2 30.3 43.9 49.6 86.2 24.1
Starcoder[19] 15B 46.8 54.5 59.6 18.1 26.1 30.4 93.1 27.6Open-Source

RTLCoder[22] 7B 62.5 72.2 76.6 36.7 45.5 49.2 96.6 48.3

Llama-3-8B 8B 45.9 60.7 65.7 23.6 34.8 38.7 79.3 27.6
Foundational Model

Llama-3-70B-4bit 70B*4bit 65.5 71.7 74.2 41.2 46.7 48.7 86.2 51.7

PrivacyGen-Llama3-8B 8B 60.6 71.4 77.4 35.8 46.6 51.7 89.7 44.8
PrivacyGen

PrivacyGen-Llama3-70B-4bit 70B*4bit 69.2 80.4 86.5 49.1 59.6 63.3 96.6 72.4

Table 4: Performance comparison of PrivacyGen, Llama-3-70B-4bit, GPT-3.5, GPT-4, VeriGen, StarCoder, RTLcoder on problems
of different difficulty levels in the RTLLM benchmark. The first and second highest scores are marked in blue and green .

Llama-3-70B-4bit PrivacyGen GPT-3.5 GPT4 VeriGen[33] StarCoder[19] RTLCoder[22]
Difficulty Design

Syntax Func Syntax Func Syntax Func Syntax Func Syntax Func Syntax Func Syntax Func

adder_8bit 5 P 5 P 3 P 4 P 3 P 2 NP 5 P
calendar, counter_12, edge_detect, pe

right_shifter 5 P 5 P 4 P 5 P 0 N/A 3 P 5 P
Rookie

Average 100% 100% 100% 100% 100% 83.3% 100% 100% 83.3% 50.0% 100% 83.3% 100% 83.3%

adder_16bit 5 P 5 P 1 NP 3 P 3 NP 2 NP 3 NP
alu, freq_div, JC_counter, multi_16bit, multi_booth_8bit, parallel2serial, RAM, synchronizer, serial2parallel, signal_generator

width_8to16 5 P 5 P 4 P 5 P 4 P 3 NP 5 P
Crafter

Average 83.3% 66.7% 91.7% 91.7% 100% 50.0% 100% 66.7% 100% 33.3% 100% 25.0% 100% 66.7%

accu 5 NP 1 P 2 P 5 P 4 NP 3 NP 4 NP
adder_32bit(CLA), adder_pipe_64bit, asyn_fifo, multi_pipe_4bit, multi_pipe_8bit, div_8bit, div_16bit, fsm, pulse_detect

traffic_light 0 NP 1 NP 4 NP 4 P 5 N/A 5 N/A 4 P
Disciple

Average 54.5% 0% 100% 36.3% 72.7% 9.09% 100% 45.4% 72.7% 0% 81.8% 0% 90.9% 18.2%

Total 75.9% 51.7% 96.6% 72.4% 89.7% 37.9% 100% 65.5% 86.2% 24.1% 93.1% 27.6% 96.6% 48.3%

state-of-the-art performance in functionality accuracy and is
slightly lower than GPT-4 in syntax accuracy. Table 4 shows de-
tailed results on problems of different difficulty levels in RTLLM.
PrivacyGen’s average accuracy onDisciple problems is much higher
than the foundational model and is very close to GPT-4. On Crafter
problems, PrivacyGen achieves state-of-the-art performance. These
results show that the Verilog generation capability of LLM is sig-
nificantly enhanced through fine-tuning on our dataset.

5.2 Data leakage Evaluation
As described in Section 1, our approach does not threaten data
privacy since it does not transmit any data externally. Table 5 in-
tuitively estimates the upload and download traffic generated by

the existing LLM-based automatic hardware generation solutions
during their entire process, where only the traffic of the best model
is counted. Constructing PrivacyGen generates no upload traffic.

6 Conclusion
This work proposes a localized, transparent, LLM-based solution
PrivacyGen for automatic hardware design generation. The entire
workflow does not rely on any commercial LLM and is executed in a
local and completely controllable environment. It also contributes a
new approach to generating high-quality datasets through the code
explanation method. Through low-cost fine-tuning experiments,
we construct a model with performance close to GPT-4 on complex
designs of the RTLLM benchmark and better than GPT-4 on the



GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Shijie Li, Weimin Fu, Yifang Zhao, Xiaolong Guo, and Yier Jin

Table 5: Upload and download traffic statistics

Works
Download Upload

Dataset Model Sensitive Data

[4],[24],[35] N/A N/A 100%

VerilogEval 300MB 32GB 10MB

VeriGen 300MB 32GB 0

RTLCoder 0 14GB 55.1 MB

PrivacyGen 1.6GB 141GB 0

VerilogEval benchmark. PrivacyGen will be open-sourced and our
approach allows for generating your own dataset to construct an
LLM solution under complete firewall protection and transparency.

Acknowledgments
Portions of this work were supported by the National Science Foun-
dation (2340949 and 2419880).

References
[1] Bo Adler, Niket Agarwal, et al. 2024. Nemotron-4 340B Technical Report.

CoRR abs/2406.11704 (2024), 34. https://doi.org/10.48550/ARXIV.2406.11704
arXiv:2406.11704

[2] AI@Meta. 2024. Llama 3 Model Card. https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md

[3] Dan Biderman, Jose Javier Gonzalez Ortiz, et al. 2024. LoRA Learns Less and
Forgets Less. CoRR abs/2405.09673 (2024), 39. https://doi.org/10.48550/ARXIV.
2405.09673 arXiv:2405.09673

[4] Jason Blocklove, Siddharth Garg, et al. 2023. Chip-Chat: Challenges and Opportu-
nities in Conversational Hardware Design. In 5th ACM/IEEEWorkshop onMachine
Learning for CAD, MLCAD 2023, Snowbird, UT, USA, September 10-13, 2023. IEEE,
Snowbird, UT, USA, 1–6. https://doi.org/10.1109/MLCAD58807.2023.10299874

[5] Mark Chen, Jerry Tworek, et al. 2021. Evaluating Large Language Models Trained
on Code. CoRR abs/2107.03374 (2021), 35. arXiv:2107.03374 https://arxiv.org/
abs/2107.03374

[6] Tianyu Chen, Hangbo Bao, et al. 2022. The-x: Privacy-preserving transformer
inference with homomorphic encryption. arXiv preprint arXiv:2206.00216 (2022).

[7] Leo de Castro, Antigoni Polychroniadou, et al. 2024. Privacy-Preserving Large
Language Model Inference via GPU-Accelerated Fully Homomorphic Encryption.
In Neurips Safe Generative AI Workshop 2024. NeurIPS Workshop, Vancouver,
Canada, 19. https://openreview.net/forum?id=Rs7h1od6ov

[8] DeepSeek-AI. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. arXiv:cs.CL/2501.12948 https://arxiv.org/abs/2501.
12948

[9] Matthew DeLorenzo, Animesh Basak Chowdhury, et al. 2024. Make Every
Move Count: LLM-based High-Quality RTL Code Generation Using MCTS.
CoRR abs/2402.03289 (2024), 7. https://doi.org/10.48550/ARXIV.2402.03289
arXiv:2402.03289

[10] Tim Dettmers, Artidoro Pagnoni, et al. 2023. QLoRA: Efficient Finetuning of
Quantized LLMs. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, et al. (Eds.). Curran Associates, Inc.,
New Orleans, LA, USA, 28. http://papers.nips.cc/paper_files/paper/2023/hash/
1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html

[11] Xiaoyu Fan, Kun Chen, et al. 2022. Nfgen: Automatic non-linear function evalua-
tion code generator for general-purpose mpc platforms. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. 995–1008.

[12] Weimin Fu, Shijie Li, et al. 2024. Hardware Phi-1.5B: A Large Language Model En-
codes Hardware Domain Specific Knowledge. In Proceedings of the 29th Asia and

South Pacific Design Automation Conference (ASPDAC ’24). IEEE Press, Incheon, Re-
public of Korea, 349–354. https://doi.org/10.1109/ASP-DAC58780.2024.10473927

[13] Weimin Fu, Shijie Li, et al. 2025. A Generalize Hardware Debugging Approach for
Large Language Models Semi-Synthetic, Datasets. IEEE Transactions on Circuits
and Systems I: Regular Papers 72, 2 (2025), 623–636. https://doi.org/10.1109/TCSI.
2024.3487486

[14] Weimin Fu, Kaichen Yang, et al. 2023. LLM4SecHW: Leveraging Domain-Specific
Large Language Model for Hardware Debugging. In 2023 Asian Hardware Ori-
ented Security and Trust Symposium (AsianHOST). 1–6. https://doi.org/10.1109/
AsianHOST59942.2023.10409307

[15] Ran Gilad-Bachrach, Nathan Dowlin, et al. 2016. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In International
conference on machine learning. PMLR, 201–210.

[16] Husheng Han, Xinyao Zheng, et al. 2024. TensorTEE: Unifying Heterogeneous
TEE Granularity for Efficient Secure Collaborative Tensor Computing. arXiv
preprint arXiv:2407.08903 (2024).

[17] Edward J. Hu, Yelong Shen, et al. 2021. LoRA: Low-Rank Adaptation of Large
Language Models. CoRR abs/2106.09685 (2021). arXiv:2106.09685 https://arxiv.
org/abs/2106.09685

[18] Haoran Li, Yulin Chen, et al. 2023. Privacy in large language models: Attacks,
defenses and future directions. arXiv preprint arXiv:2310.10383 (2023).

[19] Raymond Li, Loubna Ben Allal, et al. 2023. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161 (2023).

[20] Mingjie Liu, Teodor-Dumitru Ene, et al. 2023. Chipnemo: Domain-adapted llms
for chip design. arXiv preprint arXiv:2311.00176 (2023).

[21] Mingjie Liu, Nathaniel Pinckney, et al. 2023. Verilogeval: Evaluating large lan-
guage models for verilog code generation. In 2023 IEEE/ACM International Con-
ference on Computer Aided Design (ICCAD). IEEE, 1–8.

[22] Shang Liu, Wenji Fang, et al. 2023. Rtlcoder: Outperforming gpt-3.5 in design rtl
generation with our open-source dataset and lightweight solution. arXiv preprint
arXiv:2312.08617 (2023).

[23] Xuanqi Liu and Zhuotao Liu. 2023. Llms can understand encrypted prompt: To-
wards privacy-computing friendly transformers. arXiv preprint arXiv:2305.18396
(2023).

[24] Yao Lu, Shang Liu, et al. 2024. RTLLM: An open-source benchmark for design rtl
generation with large language model. In 2024 29th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 722–727.

[25] Mahmoud Nazzal, Deepak Vungarala, et al. 2024. A Dataset for Large Language
Model-Driven AI Accelerator Generation. arXiv preprint arXiv:2404.10875 (2024).

[26] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:
//doi.org/10.48550/ARXIV.2303.08774 arXiv:2303.08774

[27] OpenAI. 2024. OpenAI Business Terms. https://openai.com/policies/business-
terms/

[28] Hammond Pearce, Baleegh Ahmad, et al. 2022. Asleep at the keyboard? assessing
the security of github copilot’s code contributions. In 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 754–768.

[29] Nazneen Rajani, Lewis Tunstall, et al. 2023. No Robots. https://huggingface.co/
datasets/HuggingFaceH4/no_robots.

[30] Samyam Rajbhandari, Olatunji Ruwase, et al. 2021. Zero-infinity: Breaking
the gpu memory wall for extreme scale deep learning. In Proceedings of the
international conference for high performance computing, networking, storage and
analysis. 1–14.

[31] Amit Sharma, Teodor-Dumitru Ene, et al. 2024. Assessing Economic Viability: A
Comparative Analysis of Total Cost of Ownership for Domain-Adapted Large
Language Models versus State-of-the-art Counterparts in Chip Design Coding
Assistance. arXiv preprint arXiv:2404.08850 (2024).

[32] Synopsys. 2021. VCS® functional verification solution. https://www.synopsys.
com/verification/simulation/vcs.html

[33] Shailja Thakur, Baleegh Ahmad, et al. 2023. Benchmarking large language models
for automated verilog rtl code generation. In 2023 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 1–6.

[34] Shailja Thakur, Baleegh Ahmad, et al. 2024. Verigen: A large language model for
verilog code generation. ACM Transactions on Design Automation of Electronic
Systems 29, 3 (2024), 1–31.

[35] Shailja Thakur, Jason Blocklove, et al. 2023. Autochip: Automating hdl generation
using llm feedback. arXiv preprint arXiv:2311.04887 (2023).

[36] Clifford Wolf, Johann Glaser, et al. 2013. Yosys-A Free Verilog Synthesis Suite.
https://api.semanticscholar.org/CorpusID:202611483

https://doi.org/10.48550/ARXIV.2406.11704
https://arxiv.org/abs/2406.11704
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.48550/ARXIV.2405.09673
https://doi.org/10.48550/ARXIV.2405.09673
https://arxiv.org/abs/2405.09673
https://doi.org/10.1109/MLCAD58807.2023.10299874
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=Rs7h1od6ov
https://arxiv.org/abs/cs.CL/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.48550/ARXIV.2402.03289
https://arxiv.org/abs/2402.03289
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.1109/ASP-DAC58780.2024.10473927
https://doi.org/10.1109/TCSI.2024.3487486
https://doi.org/10.1109/TCSI.2024.3487486
https://doi.org/10.1109/AsianHOST59942.2023.10409307
https://doi.org/10.1109/AsianHOST59942.2023.10409307
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://openai.com/policies/business-terms/
https://openai.com/policies/business-terms/
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://api.semanticscholar.org/CorpusID:202611483

	Abstract
	1 Introduction
	2 Background
	2.1 LLMs for Hardware Code Generation
	2.2 Data Privacy Concerns for Remote LLMs
	2.3 Private LLM Inference
	2.4 Local LLM Deployment
	2.5 Hardware Private Data

	3 Methodology
	3.1 Data Cleaning
	3.2 Fine-tuning Dataset Constuction
	3.3 Fine-tuning and Evaluation

	4 Experiment
	4.1 Dataset Construction
	4.2 Model Training
	4.3 Experiment Setup

	5 Experimental Results
	5.1 PrivacyGen's evaluation on the benchmarks
	5.2 Data leakage Evaluation

	6 Conclusion
	Acknowledgments
	References

