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Abstract
Large Language Models (LLMs) have demonstrated remarkable
potential in automating coding tasks, making their application
in Electronic Design Automation (EDA) an increasingly popular
research direction. However, existing benchmarks for evaluating
LLMs’ hardware-related capabilities are overly simplistic and fail to
capture the complexity of real-world hardware projects. To address
this gap, we constructed HWFixBench, a comprehensive bench-
mark derived from 500 pull requests and 1,481 bug fixes across 12
widely-used open-source hardware projects. HWFixBench reflects
the challenges and complexity of real-world hardware tasks, pro-
viding a rigorous testbed for assessing whether LLMs can truly
automate hardware development. We evaluate general-purpose
LLMs, hardware-specialized LLMs, and prompt-based methods on
HWFixBench, offering insights into their performance and limita-
tions. To facilitate further research, we open-source the dataset and
provide full hardware simulation support, enabling robust cross-
category comparisons of solutions.

CCS Concepts
• Hardware → Software tools for EDA; • Computing method-
ologies → Language resources.
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Figure 1: Three Key Tasks in HWFixBench and Their Corre-
sponding Examples in Real-World Version Control

1 Introduction
Large Language Models (LLMs) have been rapidly integrated into
products, offering question-answering [30] and code assistance [43]
services. While popular in the software domain, increasing ef-
forts [20, 27, 33] have been made to explore and refine LLM in
the hardware domain. Hardware-related benchmarks designed
to evaluate LLM have also emerged. However, existing bench-
marks [1, 16, 18, 22] have reached a state of saturation in assessing
model performance and fail to reflect real-world hardware tasks.
These benchmarks do not effectively delineate the performance
boundaries of state-of-the-art (SOTA) LLMs.

In the software domain, the SWE-Bench [15] constructed from
real-world projects has become the de facto standard for evaluat-
ing software engineering performance. Similarly, there is a press-
ing need to establish a similar benchmark in the hardware do-
main. Given the rapid advancements in LLMs, existing evaluation
benchmarks quickly become obsolete, failing to capture these mod-
els’ evolving complexity and capabilities. This underscores the
urgent need for a forward-looking benchmark to track meaningful
progress over the forthcoming years. As a dataset-centric study,
HWFixBench sets rigorous and realistic baselines by leveraging
real-world hardware repair tasks supported by meticulous data
selection.

HWFixBench is derived from high-quality open-source hardware
projects. Specifically, we include projects with over 50 citations in
academic literature or those that have served as evaluation targets
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in EDA security competitions, as such projects have rigorous vali-
dation. Additionally, we leverage version control data to trace the
discovery and resolution of hardware bugs, forming the founda-
tion of HWFixBench. For usability, we modify dependencies in the
original designs to ensure they can be simulated as standalone com-
ponents. The Figure 1 illustrates the three tasks in HWFixBench
and their real-world counterparts in version control systems.
(1) Task 1: Bug Detection: The LLM identifies bugs directly from

the hardware design, analogous to issues reported by users or
test engineers during the hardware design’s deployment.

(2) Task 2: Bug Fixing: Given a reported issue and the correspond-
ing hardware design, the LLM generates a fix, mirroring the
process where a developer submits a pull request to address a
specific issue.

(3) Task 3: Patch Generation from Design: The LLM generates
patches directly from the hardware design without an explicit
issue report. While such an approach is uncommon in con-
ventional development workflows, it represents a prevalent
application of LLMs in hardware design automation.

To summarize, our key contributions are as follows:
• High-Quality Dataset Construction: We developed a high-quality
dataset based on open-source hardware projects with outstand-
ing reputations. Our preprocessing techniques removed design
dependencies and enhanced issue descriptions to ensure stabil-
ity, mitigating the impact of user expertise variability on issue
quality.

• Comprehensive Model Evaluation: We systematically evaluated
various models, including proprietary models, open-source mod-
els with general coding capabilities, hardware domain expert
fine-tuned models, and prompt-based approaches. Performance
was assessed across all three tasks. For fine-tuned models, we
measured their performance gains over baseline models. For
prompt-based methods, we compared the performance improve-
ment achieved using task-specific prompt formats versus stan-
dard evaluation settings within the same model.

• Open-Source Benchmark and Testing Framework: We release our
benchmark to enable researchers testing their fine-tuned or other
accessible models. We also provide a testbench, allowing for more
rigorous evaluation endpoints beyond the current version.

2 Background
2.1 Version Control
Version control documents a project’s entire lifecycle, from the
initial code creation to deployment, including feature development,
bug fixes, and refactoring. These records capture the codebase’s
evolution and provide contextual information, such as developer
discussions, design decisions, and performance optimizations. With
the hardware open-source communities’ rise, version control has
become indispensable in development [10]. Notable open-source
hardware groups utilize Git [32] to track modifications throughout
the stages of the hardware development, including RTL design,
simulation, verification, and synthesis.

In this work, version control serves as a raw information source.
• Issue Tracking: Documents design bugs.
• Patch: The patches to correct errors.

2.2 LLM Backend: Use LLM as a judge
Human-processed datasets have become prohibitively expensive
with the increasing sizes. Leading AI companies have begun em-
ploying PhDs in computer science, mathematics, and other sub-
jects under the title PhD Data Partner to annotate data. However,
the limited availability of PhD-level experts constrains the speed,
and the high associated costs have sparked interest in fully auto-
mated annotation. LLM Judges have been demonstrated as alter-
natives [5, 21, 48]. LLMs are considered well-suited for evaluating
code semantic correctness. CodeJudge [31], [40], and [31] have ex-
plored the feasibility of using LLMs for code evaluation and have
found that they can deliver stable performance. This evaluation
cannot replace strict functional testing but is the best assessment
for current LLM applications in the hardware domain. Currently,
LLMs struggle to generate hardware that passes functional verifica-
tion. However, compared to starting from scratch, having an initial
output with flaws is often considered a better start [36].

The assessment of abilities is often conducted in a closed-book
manner [21], so HWFixBench exclusively provides the test to LLMs.

2.3 Simulator Backend
The gold standard in the hardware domain remains simulation. To
pave the way for fully automated in the future, HWFixBench pro-
vides a simulator backend. We expanded the macros, implemented
minimal external functions, and developed simulation testbenches.

Our evaluation follows a zero prior knowledge testing approach,
meaning that no additional inputs are provided aside from the de-
sign (and issue descriptions in Task 2). This test scenario aligns with
the current LLM automation trend of turning labor into software.

As discussed in Subsection 2.2, imposing strict functional simu-
lation requirements would result in all LLMs yielding zero perfor-
mance. This paper does not report detailed metrics for the simulator
backend. However, we have open-sourced the benchmark, allowing
approaches with non-LLM applications and future powerful LLMs.

2.4 Evaluation Methods
We use the pass rate as the performance metric, which measures
the success rate of a test given a single attempt. This is a stringent
criterion that is not inherently LLM-friendly. LLMs are regarded
as experts that produce judgments and conclusions by reading and
comparing information in the hardware domain [10].

3 Methodology
3.1 Benchmark Construction
3.1.1 Preprocessing Pipeline. The Figure 2 black lines represent
the data selection process, illustrating the steps to filter data from
version control systems for inclusion in HWFixBench. Our bench-
mark collects all pull requests (PRs) from 12 open-source hardware
projects. For each PR, we identify and retrieve the corresponding
issue it resolves, selecting only those related to bugs. PRs containing
file modifications and aligned patches are filtered, providing the
raw dataset. For Bug Detection, the issue reports extracted from
version control serve as ground truth. For Bug Fixing, the relation-
ship between issues and PRs provides paired data for testing LLMs
in generating fixes given an issue and its associated design. For



HWFixBench: Benchmarking Tools for Hardware Understanding and Fault Repair GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

Pull Request Issue
File Patch Task 1

Task 2Task 3

Figure 2: Relationship Between Version Control Data and
Specific Tasks

Patch Generation from Design, PR modifications (patches) serve as
reference solutions. Table 1 presents a step-by-step statistical break-
down, detailing the data refinement process—from the total number
of collected PRs to the final set of bug-related, issue-resolved file
modifications in HWFixBench (excluding projects that were not
selected). After filtering, HWFixBench includes nine projects, 500
pull requests, and 1,481 bug-fix-related file modifications.

Table 1: Statistical Breakdown of Version Control Data from
Selected Open-Source Projects: From Total Pull Requests to
Bug-Fix-Related File Modifications

Project Total Pull Request Issue Solved PR Selected PR Selected File Change
OpenTitan 19297 1513 300 556

Ibex 1403 583 99 271
CVA6 1641 607 39 211
CVW 1009 339 25 288

CV32E40X 774 240 17 73
CV32E40P 532 172 11 31
CV32E40S 438 90 6 31

CV-HPDCache 42 17 2 7
Core-V MCU 188 41 1 7

Total 25471 3640 500 1481

3.1.2 Post-Processing. We observed that community issues are of-
ten vague and do not explicitly describe the bugs, making them
unreliable as ground truth. To address this, we manually curated
and enhanced the issue descriptions to ensure they clearly articu-
late the specific bugs being addressed. Additionally, we performed
data sanitization and preprocessing on the design files, including
de-identifying sensitive information, expanding macros, and mini-
mizing external dependencies referenced within the files. We also
give testbenches to facilitate future simulation-based comparisons.

3.1.3 Alpaca Style Dataset Construction. HWFixBench defines a
well-definedAlpaca-style instruction-input-output format to ensure
interpretability and systematic evaluation of LLM performance.

Task 1: The LLM to identify the corresponding bug report associ-
ated with a given hardware design file. The input comprises the full
hardware design; the expected output is the relevant issue describing
the bug. This task simulates how test engineers or users detect and
report hardware issues.

Task 2: The LLM generates a corrective patch based on a reported
issue and the corresponding hardware design. The input includes both
the bug report and the affected design, while the output is a patch that
addresses the issue. This process aligns with real-world debugging
workflows, where developers submit fixes via pull requests in version
control systems.

Task 3: Unlike the previous task, this task requires the LLM to
identify and fix errors autonomously without an explicit bug report.
The input consists solely of the hardware design file, and the output
is a minimal corrective patch if an issue is detected; otherwise, the

model should return "No modification needed." This task evaluates
the model’s ability to perform self-directed debugging and repair,
mimicking an automated hardware verification and correction system.

3.2 Benchmark Statistics
Table 2 provides two complementary statistical perspectives to com-
prehensively analyze HWFixBench. Line counts reflect traditional
EDA metrics, offering insights into the structural complexity of
hardware designs. Token counts, computed using the LLaMA-3 to-
kenizer, align with the requirements of LLM research by capturing
the semantic granularity of the code. Additionally, we present statis-
tical results for the comparative benchmarks discussed in Section 5,
enabling a thorough evaluation of HWFixBench in relation to ex-
isting benchmarks. The high variability in line/token counts and
high skewness underscores the inherent complexity of real-world
hardware design changes. HWFixBench contains a large amount,
minimal edits, and outlier cases where designs or patches exhibit
immense scopes. HWFixBench is a stress hardware domain test
for LLM across issue detection, patch generation, and implicit bug
resolution.

Table 2: Statistical Comparison of HWFixBench and Com-
mon Hardware LLM Benchmarks

Metric Count Line Token
mean max 0.25 skew mean max 0.25 skew

VerilogEval 156 19.15 76 11.00 1.77 123.31 571 53.50 1.88
FVEval 192 421.95 2139 103.00 2.14 2816.23 14587 651.00 2.14
RTLLM 50 54.64 195 24.75 1.74 415.20 1607 166.25 1.86
CreativeEval 119 21.03 108 10.00 2.55 150.16 1019 66.50 2.84
CorrectBench [28] 156 18.60 77 11.00 1.85 119.16 571 49.75 1.93
HWFixBench 1232 487.65 3488 12.00 2.28 4564.29 203 1266.50 3.08

3.3 Metric Evaluation
We designed the prompt based on the assumption in Sub-Section 2.4.
The prompt that instructs the evaluator to compare the predicted
output with the ground truth. The prompt asks ChatGPT4o whether
both results convey the same solution and solve the same issue. If
they align, the evaluator returns "MATCHED"; otherwise, "NOT _
MATCHED", accompanied by a short explanation. This structured
evaluation ensures consistency in assessing model performance
across different tasks.

4 Experiment
4.1 LLMs Under Test
HWFixBenchwas evaluated across four categories of LLMs: general-
purpose open-source models, proprietary models, fine-tuned mod-
els and prompt methods.

For general-purpose open-source LLMs, we selected a diverse set
of models spanning multiple organizations and parameter scales:

• DeepSeek Coder [13] (6.7B, 7B, 33B), R1 Distill Models [7]
(Qwen 1.5B, 7B, 14B, 32B, LLaMA 8B, 70B)

• Google Gemma 7B [24], Gemma2 27B [29]
• Meta AI LLaMA (LLaMA 2 70B [37], LLaMA 3 8B, 70B,
LLaMA 3.1 8B, 70B, LLaMA 3.2 11B, LLaMA 3.3 70B [9])

• Microsoft models (Phi-3.5 MoE [3], Phi-4 [2])
• Qwen models [42] (Qwen2.5 14B, 32B, QwQ 32B)

For proprietary models, we included:
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• OpenAI models (GPT-4o, GPT-4o mini, O1, O1mini, O3mini)

For fine-tuned(FT) models, we applied a selection process to ensure
compatibility with modern LLM pipelines. Specific models were
excluded due to obsolescence (MEIC [41], VeriGen [34], AutoV-
Coder [12]) or lack of availability (CraftRTL [19], LLM4SecHW [11],
[26]). The final selection included:

• CodeV [46], OriGen [6], RTLCoder [20], and VeriSeek [39]

For prompt-based methods, we categorized them into multi-agent
systems and normal prompt:

• Multi-Agent Systems: SPEC in [28] were removed. For Ver-
ilogCoder [14], we provided additional simulation.

• Normal Prompt: We adapted the general prompt format to
align with methodologies: PromptV [25], RTLRewriter [44],
VerilogReader [23], [4], RTLFixer [38], and [35].

4.2 Overall Performance across models
4.2.1 Task 1. The best-performing model was OpenAI’s propri-
etary GPT-4o, achieving 11.44%. The top-performing open-source
model, Microsoft’s Phi-4, reached 10.06%, while most other open
LLMs achieved between 3% and 8%, a performance level that ren-
ders them unusable for real-world applications. Among the fine-
tuned models, OriGen demonstrated a substantial 61.02% relative
improvement; however, its absolute performance remained low at
7.71%. This raises questions about whether the observed improve-
ment stems from the weak baseline performance of the underlying
DeepSeek Coder series or if fine-tuning genuinely offers meaningful
enhancements when applied to powerful models.

4.2.2 Task 2. The strongest performerwas o1mini, achieving an im-
pressive accuracy of 83.44%. Among open-source models, DeepSeek
R1 Distill Llama 80B obtained the highest score at 43.83%. Notably,
models designed for advanced reasoning, often considered superior
in general-purpose tasks, did not demonstrate a clear advantage
in this project. Model performance positively correlated with scale
within the same generation and institution. Only OriGen demon-
strated a performance gain among fine-tuned models, while the
remaining three models experienced degradation.

This result aligns with the expectation that LLMs can assist in
code repair; however, it also highlights a significant gap between
proprietary and open-source models. The disparity suggests that
OpenAI’s closed-source models may have been explicitly trained
with hardware-related data, whereas most open-source models lack
sufficient exposure to this domain.

4.2.3 Task 3. Despite being the most challenging task, the models’
performances exceeded results from Task 1. QwQ 32B Preview
achieved the highest score among all models with 29.95%. Only
VeriSeek among the fine-tuned models showed a performance gain.
However, it remains unclear whether the relative improvement
is genuinely due to the fine-tuning process or reflects the weak
baseline performance of the DeepSeek Coder 7B model (12.74%
vs. 15.50% from the 6.7B model). The fine-tuned model’s score of
13.23% also lags behind the highest-performing fine-tuned model,
RTLCoder (14.20%).

4.3 Knowledge Cutoff Analysis
A common question in evaluating LLMs is whether their perfor-
mance reflects genuine understanding or mere memorization of
internet-crawled data. Since time progresses linearly and unidirec-
tionally, bug fixes made public after an LLM’s knowledge cutoff
date could not have been present in its training data. Using each
model’s reported knowledge cutoff date as a reference, we partition
the benchmark into pre-cutoff and post-cutoff subsets. Then, we
analyze the performance gap between them to assess whether an
LLM truly understands the task as shown in Table 4.

While this approach appears ideal theoretically, hardware data
inside LLMs is often actively removed. A notable example is re-
moving hardware code in StarCoder [17] between iterations. This
omission creates a fundamental limitation: only a post-cutoff per-
formance drop can reliably indicate that the model lacks proper
understanding of hardware tasks. Conversely, an unexpected per-
formance increase cannot be considered evidence of experience,
as the model’s training data may have contained little hardware
knowledge, rendering the experiment’s assumptions invalid.

4.3.1 Task1. Only the fine-tuned OriGen model exhibited perfor-
mance degradation after the knowledge cutoff. Given the overall
low baseline for this task, we can infer that LLMs generally perform
poorly in directly identifying bugs in hardware designs. Still, their
performance does not strongly depend on whether such data was
present in the training set.

4.3.2 Task 2. DeepSeek’s Coder series maintained stable perfor-
mance, while the Distill series degraded significantly. Since the
latter models did not undergo post-training and only relied on su-
pervised fine-tuning, this suggests a stronger dependence on the
training dataset. Similarly, Google’s Gemma 2, mostMeta AImodels,
and Microsoft’s models exhibited similar post-cutoff performance
drops. However, Qwen models improved across iterations—while
the Qwen 2.5 series still suffered post-cutoff degradation, the next-
generation models reversed this trend. For OpenAI models, GPT-4o
and GPT-4o mini did not perform poorly, while the "thinking" mod-
els exhibited a decline.

Among FT models, those designed for hardware code generation
(CodeV and RTLCoder) did not show a drop, whereas debug-specific
models suffered a significant decrease. This indicates that the latter
depends on explicitly presenting test cases in the training data.

4.3.3 Task 3. The results were similar to Task 2, except that "think-
ing" models did not exhibit negative optimization this time. How-
ever, fine-tuned models experienced an overall performance decline,
suggesting that models trained explicitly for hardware debugging
struggle to generalize beyond their pre-existing knowledge.

4.4 Design Length Evaluation
The ability to extrapolate LLM performance from small-scale to
large-scale designs has long been an open question, and this chal-
lenge is particularly pronounced for LLMs if they were trained on
short designs. Based on two typical hardware LLM datasets[20, 45],
we identified a typical maximum token length of 2, 567 tokens. To
simulate real-world scenarios where additional context is appended,
we extended this length by a factor of 1.5×, partitioning the bench-
mark into a short subset (≤ 3, 852 tokens) and a long subset (> 3, 852



HWFixBench: Benchmarking Tools for Hardware Understanding and Fault Repair GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

Table 3: Overall Performance on HWFixBench across LLMs under Test

Open Source Model Proprietary Model
Affiliation Name Task1 Task2 Task3 Affiliation Name Thinking Task1 Task2 Task3

Coder 6.7b base 4.79% 17.13% 15.50% gpt 4o 11.44% 83.04% 21.27%
Coder 7b Instruct v1.5 6.82% 22.00% 12.74% gpt 4o mini No 7.22% 75.41% 21.92%
Coder 33b Instruct 6.90% 16.48% 13.88% o1 5.76% 78.57% 24.59%
R1 Distill Llama 8B 7.06% 38.07% 23.38% o1 mini 5.52% 83.44% 22.73%
R1 Distill Llama 70B 6.66% 43.83% 24.43%

OpenAI

o3 mini
Yes

6.98% 75.65% 26.22%
R1 Distill Qwen 1.5B 3.25% 23.86% 17.21% Supervised Finetuning Method
R1 Distill Qwen 7B 5.84% 29.87% 24.11% Task Affiliation Model Pass Rate Base Model Pass Rate Benefit
R1 Distill Qwen 14B 5.44% 38.72% 25.41% CAS CodeV DS [46] 7.22% 50.85%

DeepSeek

R1 Distill Qwen 32B 7.14% 42.13% 27.27% PKU OriGen [6] 7.71% 61.02%
Gemma 7B 2.35% 23.30% 9.98% HKUST RTLCoder [20] 6.33%

DeepSeek
Coder 6.7b base 4.79%

32.20%
Google Gemma2 27B 3.73% 10.23% 9.58%

Task1

CUHK VeriSeek [39] 4.30% DeepSeek Coder
7b Instruct v1.5 6.82% -36.90%

Llama 2 70b hf 5.76% 12.66% 10.23% CAS CodeV DS [46] 12.42% -27.49%
Llama 3 8B Instruct 7.39% 28.73% 17.37% PKU OriGen [6] 21.59% 26.07%
Llama 3 70B Instruct 5.68% 31.01% 15.99% HKUST RTLCoder [20] 9.58%

DeepSeek Coder
6.7b base 17.13%

-44.08%

Llama 3.1 8B Instruct 7.14% 31.25% 21.43%

Task2

CUHK VeriSeek [39] 12.74% DeepSeek Coder
7b Instruct v1.5 22.00% -42.07%

Llama 3.1 70B Instruct 7.06% 35.31% 20.13% CAS CodeV DS [46] 13.96% -9.95%
Llama 3.2 11B Vison 7.31% 31.33% 22.32% PKU OriGen [6] 13.31% -14.14%

Meta

Llama 3.3 70B Instruct 7.22% 39.53% 18.02% HKUST RTLCoder [20] 14.20%

DeepSeek Coder
6.7b base 15.50%

-8.38%

Qwen2.5 14B 6.41% 32.31% 19.81%

Task3

CUHK VeriSeek [39] 13.23% DeepSeek Coder
7b Instruct v1.5 12.74% 3.82%

Qwen2.5 32B 7.14% 34.90% 18.10%Qwen
QwQ 32B Preview 8.93% 40.02% 29.95%

Phi3.5 MoE Instruct 5.60% 11.77% 9.82%Microsoft Phi-4 10.06% 36.61% 27.92%

Table 4: Knowledge Cutoff Analysis across All LLMs

Task1 Task2 Task3Affiliation Model Knowledge
Cutoff Time Pre Perf Post Perf Perf Diff Pre Perf Post Perf Perf Diff Pre Perf Post Perf Perf Diff

General Purpose LLM or Code LLM (not hardware domain expert)
Coder 6.7b base Mar-23 2.38% 5.69% 3.31% 10.71% 19.53% 8.82% 9.23% 17.86% 8.63%

Coder 7b Instruct v1.5 Mar-23 5.06% 7.48% 2.42% 17.26% 23.77% 6.51% 8.93% 14.17% 5.25%
Coder 33b Instruct Mar-23 5.06% 7.59% 2.53% 12.50% 17.97% 5.47% 14.29% 13.73% -0.56%
R1 Distill Qwen 1.5B Jul-24 2.19% 7.96% 5.78% 24.75% 19.91% -4.84% 19.28% 7.96% -11.32%
R1 Distill Qwen 7B Jul-24 4.57% 11.50% 6.93% 30.42% 27.43% -2.98% 26.14% 15.04% -11.10%
R1 Distill Llama 8B Jul-24 4.97% 16.37% 11.40% 38.47% 36.28% -2.19% 25.15% 15.49% -9.66%
R1 Distill Qwen 14B Jul-24 4.47% 9.73% 5.26% 38.57% 39.38% 0.81% 27.14% 17.70% -9.44%
R1 Distill Qwen 32B Jul-24 5.77% 13.27% 7.51% 41.95% 42.92% 0.97% 29.22% 18.58% -10.64%

DeepSeek

R1 Distill Llama 70B Jul-24 5.57% 11.50% 5.94% 43.84% 43.81% -0.03% 27.24% 11.95% -15.29%
Google Gemma2 27B Jun-24 2.21% 7.90% 5.69% 11.30% 7.29% -4.00% 11.41% 4.56% -6.85%

Llama 2 70b hf Jul-23 2.83% 7.12% 4.29% 8.74% 14.47% 5.73% 6.94% 11.74% 4.80%
Llama 3 8B Instruct Mar-23 3.57% 8.82% 5.25% 25.60% 29.91% 4.32% 15.48% 18.08% 2.60%
Llama 3 70B Instruct Dec-23 3.00% 7.97% 4.97% 34.22% 28.27% -5.94% 19.93% 12.63% -7.30%
Llama 3.1 8B Instruct Dec-23 4.06% 9.77% 5.72% 33.33% 29.47% -3.86% 31.22% 13.08% -18.13%
Llama 3.1 70B Instruct Dec-23 3.53% 10.08% 6.55% 35.45% 35.19% -0.26% 25.04% 15.94% -9.10%
Llama 3.2 11B Vison Dec-23 4.41% 9.77% 5.37% 34.92% 28.27% -6.65% 29.45% 16.24% -13.21%

Meta

Llama 3.3 70B Instruct Dec-23 3.70% 10.23% 6.52% 42.68% 36.84% -5.84% 26.10% 11.13% -14.97%
Phi3.5 MoE Instruct Oct-23 2.11% 7.45% 5.35% 7.49% 14.04% 6.54% 10.30% 9.57% -0.74%Microsoft Phi-4 Jun-24 6.87% 18.84% 11.98% 37.65% 33.74% -3.91% 24.69% 15.64% -9.05%

Qwen2.5 14B Dec-23 3.70% 8.72% 5.02% 34.57% 30.38% -4.19% 23.81% 13.23% -10.58%
Qwen2.5 32B Dec-23 4.06% 9.77% 5.72% 36.33% 33.68% -2.65% 32.80% 27.52% -5.29%Qwen

QwQ 32B Preview Dec-23 4.59% 12.63% 8.05% 38.80% 41.05% 2.25% 37.74% 43.16% 5.42%
gpt 4o Oct-23 7.49% 13.54% 6.05% 82.67% 83.23% 0.56% 18.50% 22.73% 4.23%

gpt 4o mini Oct-23 7.03% 7.33% 0.30% 74.00% 76.15% 2.14% 17.33% 24.35% 7.02%
o1 Oct-23 3.75% 6.83% 3.09% 81.26% 77.14% -4.12% 21.78% 26.09% 4.31%

o1 mini Oct-23 4.22% 6.21% 2.00% 83.61% 83.35% -0.25% 18.03% 25.22% 7.18%
OpenAI

o3 mini Oct-23 3.98% 8.57% 4.59% 77.05% 74.91% -2.14% 23.42% 27.70% 4.28%
Supervised Finetuning Method

CAS CodeV DS [46] 7/17/2024 6.14% 13.23% 7.09% 12.37% 12.70% 0.33% 14.96% 8.47% -6.49%
PKU OriGen [6] 10/15/2024 7.92% 5.26% -2.65% 21.99% 16.84% -5.15% 13.63% 9.47% -4.16%

HKUST RTLCoder [20] 1/21/2024 3.90% 8.97% 5.07% 7.64% 11.68% 4.03% 14.82% 13.54% -1.28%
CUHK VeriSeek [39] 7/19/2024 3.07% 11.17% 8.11% 13.12% 10.64% -2.48% 14.66% 5.32% -9.34%

tokens). This evaluation assessed whether LLMs could generalize
beyond their maximum training lengths while maintaining robust
performance on extended hardware design inputs.

Most models exhibited performance degradation on all tasks
when presented with sequences exceeding the estimated training
threshold, highlighting a general limitation in handling long hard-
ware tasks. The degradation was particularly pronounced in open-
source and fine-tuned models.

Only OpenAI’s proprietary models demonstrated no degradation
on Task 2, suggesting superior long-sequence processing capabili-
ties or a more practical approach in hardware scenarios.

4.5 Prompt methods Analysis
We conducted prompt method experiments on open-source models
in the 27B–32B range, FT LLMs, and base models. The results,
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Table 5: Design Length Analysis across All LLMs

Task1 Task2 Task3Affiliation Model Short Perf Long Perf Perf Diff Short Perf Long Perf Perf Diff Short Perf Long Perf Perf Diff
General Purpose LLM or Code LLM (not hardware domain expert)

Coder 33b Instruct 7.92% 5.40% -2.52% 24.59% 4.60% -19.99% 17.62% 8.40% -9.22%
Coder 6.7b base 5.74% 3.40% -2.34% 25.68% 4.60% -21.08% 21.58% 6.60% -14.98%
Coder 7b Instruct v1.5 6.97% 6.60% -0.37% 31.69% 7.80% -23.89% 16.39% 7.40% -8.99%
R1 Distill Llama 70B 7.24% 5.80% -1.44% 58.33% 22.60% -35.73% 32.51% 12.60% -19.91%
R1 Distill Llama 8B 8.61% 4.80% -3.81% 52.46% 17.00% -35.46% 31.42% 11.60% -19.82%
R1 Distill Qwen 1.5B 3.55% 2.80% -0.75% 34.02% 9.00% -25.02% 22.68% 9.20% -13.48%
R1 Distill Qwen 14B 6.28% 4.20% -2.08% 51.50% 20.00% -31.50% 35.25% 11.00% -24.25%
R1 Distill Qwen 32B 8.74% 4.80% -3.94% 57.65% 19.40% -38.25% 36.20% 14.20% -22.00%

DeepSeek

R1 Distill Qwen 7B 7.51% 3.40% -4.11% 43.17% 10.40% -32.77% 33.61% 10.20% -23.41%
Gemma2 27B 4.51% 2.60% -1.91% 12.70% 6.60% -6.10% 12.98% 4.60% -8.38%Google Gemma 7B 2.60% 2.00% -0.60% 27.73% 16.80% -10.93% 12.98% 5.60% -7.38%
Llama 2 70b hf 6.69% 4.40% -2.29% 18.03% 4.80% -13.23% 13.93% 4.80% -9.13%
Llama 3.1 70B Instruct 7.10% 7.00% -0.10% 46.99% 18.20% -28.79% 24.73% 13.40% -11.33%
Llama 3.1 8B Instruct 7.51% 6.60% -0.91% 42.35% 15.00% -27.35% 23.91% 17.80% -6.11%
Llama 3.2 11B Vison 8.06% 6.20% -1.86% 43.31% 13.80% -29.51% 28.28% 13.60% -14.68%
Llama 3.3 70B Instruct 6.56% 8.20% 1.64% 50.00% 24.20% -25.80% 20.22% 14.80% -5.42%
Llama 3 70B Instruct 5.19% 6.40% 1.21% 41.53% 15.60% -25.93% 17.62% 13.60% -4.02%

Meta

Llama 3 8B Instruct 8.47% 5.80% -2.67% 36.89% 16.80% -20.09% 18.85% 15.20% -3.65%
Phi3.5 MoE Instruct 6.42% 4.40% -2.02% 17.08% 4.00% -13.08% 12.02% 6.60% -5.42%Microsoft Phi-4 11.07% 8.60% -2.47% 51.23% 15.20% -36.03% 35.52% 16.80% -18.72%
Qwen2.5 14B 6.69% 6.00% -0.69% 45.36% 13.20% -32.16% 23.09% 15.00% -8.09%
Qwen2.5 32B 6.56% 8.00% 1.44% 47.68% 16.20% -31.48% 20.36% 14.80% -5.56%Qwen
QwQ 32B Preview 9.70% 7.80% -1.90% 57.10% 15.00% -42.10% 40.16% 15.00% -25.16%
gpt-4o 12.43% 10.00% -2.43% 83.20% 82.80% -0.40% 24.45% 16.60% -7.85%
gpt-4o-mini 7.65% 6.60% -1.05% 74.45% 76.80% 2.35% 24.59% 18.00% -6.59%
o1 6.83% 4.20% -2.63% 76.09% 82.20% 6.11% 26.64% 21.60% -5.04%
o1-mini 5.87% 5.00% -0.87% 83.20% 83.80% 0.60% 24.59% 20.00% -4.59%

OpenAI

o3-mini 8.20% 5.20% -3.00% 72.95% 79.60% 6.65% 27.87% 23.80% -4.07%
Supervised Finetuning Method

CAS CodeV DS [46] 7.65% 6.60% -1.05% 18.17% 4.00% -14.17% 20.08% 5.00% -15.08%
PKU OriGen [6] 9.56% 5.00% -4.56% 31.42% 7.20% -24.22% 17.62% 7.00% -10.62%

HKUST RTLCoder [20] 7.10% 5.20% -1.90% 14.48% 2.40% -12.08% 20.63% 4.80% -15.83%
CUHK VeriSeek [39] 5.19% 3.00% -2.19% 19.40% 3.00% -16.40% 18.99% 4.80% -14.19%

presented in Table 6, should be interpreted with caution, as this
experiment is not directly comparable to previous evaluations.

A key finding is that the assumptionmade by promptmethod
studies, that their effectiveness is independent of the under-
lying LLM, does not hold. Instead, each prompt method must
be strictly tailored to specific LLMs, making them techniques for
optimizing particular models rather than universal solutions. While
prompting can enhance LLMs that are otherwise poorly suited for
hardware tasks by reformatting input information, it cannot substi-
tute for model advancements. For example, Gemma2 27B achieved
a twofold performance increase but remained the weakest model. In
contrast, QwQ 32B and DeepSeek R1 Distill Qwen 32B maintained
relatively strong performance despite not being optimized for these
prompt methods, demonstrating excellent model stability. Qwen2.5
32B showed a notable positive gain, making it a promising base
model for prompt-based techniques. However, prompt methods
alone cannot bridge model size and fundamental performance gaps.

Combining fine-tuned models with prompt methods did not
lead to cumulative performance gains. Notably, OriGen, the best-
performing fine-tuned model, suffered a severe performance drop
when used in conjunction with prompt methods. VeriSeek exhibited
similar degradation. Meanwhile, RTLCoder and CodeV, two hard-
ware design-specific models, demonstrated strong compatibility
with prompt-based approaches.

5 Related Work
Unlike SWEBench[15], which focuses primarily on Python code,
our work extends coverage to SystemVerilog implementations of

typical chip functional modules. In practical hardware development,
testing and debugging are typically handled by two separate roles:
test engineers and develop engineers. Our benchmark reflects this
division by structuring tasks into two categories: Task 1 for testing
and Task 2 for repair. While mainstream LLM-based approaches
often attempt to consolidate these roles or directly generate so-
lutions in a single step, we evaluate this strategy through Task 3,
testing the LLM’s ability to handle both scenarios simultaneously.
We show the SOTA performance of existing benchmarks

VerilogEval [18] is a pedagogical tool for digital logic design
courses rather than an accurate measure of hardware design ca-
pability. Its most complex benchmarks involve simple finite-state
machine applications, while its most straightforward cases cover
empty designs or constant-zero outputs. Similarly, CreativeEval[8]
and CorrectBench [28] are built on the same HDLBits foundation,
focusing on basic Verilog-level exercises for educational purposes.
This fundamentally differs from HWFixBench, which covers real-
world chip functional module designs with practical applications
and significantly higher complexity.

While RTLLM [22] shares similarities with our work by including
simple module designs, HWFixBench is unique in drawing modules
directly from real-world hardware repair workflows, making its
tasks more representative of practical engineering challenges. FVE-
val [16], on the other hand, focuses on specific edge cases in FIFO
and Pipeline scenarios, assessing LLM-generated SystemVerilog
assertions using JasperGold. While these tasks are not inherently
challenging, their low tolerance for error makes them unsuitable
as general LLM benchmarks.
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Table 6: Prompt methods Analysis based on various LLMs

Model Base Performance Task Affiliation Prompt Style Pass Rate Benefit Model Pass Rate Task Affiliation Prompt Style Pass Rate Benefit
4.79% Task1 Uni Siegen CorrectBench [28] 4.40% -8.10% 7.22% Task1 Uni Siegen CorrectBench [28] 7.58% 4.92%

Uconn AdvancedLLM [35] 19.52% 13.96% Uconn AdvancedLLM [35] 13.40% 7.94%
Uni Siegen CorrectBench [28] 18.26% 6.60% Uni Siegen CorrectBench [28] 14.03% 12.96%
UNSW [4] 17.92% 4.61% UNSW [4] 13.79% 11.07%
Stevens PromptV [25] 18.16% 6.03% Stevens PromptV [25] 14.38% 15.79%
Nvidia RTLFixer [38] 18.18% 6.16% Nvidia RTLFixer [38] 15.72% 26.62%

17.13% Task2

PKU VerilogReader [23] 18.21% 6.34%

12.42% Task2

PKU VerilogReader [23] 13.40% 7.94%
Nvidia RTLRewriter [44] 14.67% -5.40% Nvidia RTLRewriter [44] 18.21% 30.45%

DeepSeek
Coder 6.7b

base

15.50% Task3 CUHK VerilogCoder [14] 18.85% 21.57%

CodeV DS [46]

13.96% Task3 CUHK VerilogCoder [14] 18.04% 29.22%
6.82% Task1 Uni Siegen CorrectBench [28] 5.72% -16.05% 3.73% Task1 Uni Siegen CorrectBench [28] 5.69% 52.42%

Uconn AdvancedLLM [35] 21.06% -4.25% Uconn AdvancedLLM [35] 29.65% 189.89%
Uni Siegen CorrectBench [28] 19.08% -13.28% Uni Siegen CorrectBench [28] 28.12% 174.93%
UNSW [4] 20.15% -8.40% UNSW [4] 25.08% 145.24%
Stevens PromptV [25] 19.64% -10.73% Stevens PromptV [25] 26.89% 162.97%
Nvidia RTLFixer [38] 20.15% -8.40% Nvidia RTLFixer [38] 27.18% 165.80%

22.00% Task2

PKU VerilogReader [23] 17.00% -22.72%

10.23% Task2

PKU VerilogReader [23] 23.33% 128.09%
Nvidia RTLRewriter [44] 13.81% 8.40% Nvidia RTLRewriter [44] 19.38% 102.33%

DeepSeek
Coder 7b
Instruct
v1.5

12.74% Task3 CUHK VerilogCoder [14] 19.93% 56.42%

Gemma2 27B

9.58% Task3 CUHK VerilogCoder [14] 24.20% 152.64%
7.71% Task1 Uni Siegen CorrectBench [28] 0.00% -100.00% 8.93% Task1 Uni Siegen CorrectBench [28] 7.88% -11.70%

Uconn AdvancedLLM [35] 0.08% -99.61% Uconn AdvancedLLM [35] 29.83% -25.45%
Uni Siegen CorrectBench [28] 0.08% -99.61% Uni Siegen CorrectBench [28] 30.80% -23.04%
UNSW [4] 0.42% -98.04% UNSW [4] 29.59% -26.05%
Stevens PromptV [25] 0.42% -98.04% Stevens PromptV [25] 30.37% -24.10%
Nvidia RTLFixer [38] 0.17% -99.22% Nvidia RTLFixer [38] 31.08% -22.34%

21.59% Task2

PKU VerilogReader [23] 0.42% -98.05%

40.02% Task2

PKU VerilogReader [23] 29.10% -27.28%
Nvidia RTLRewriter [44] 0.17% -98.71% Nvidia RTLRewriter [44] 18.50% -38.24%

OriGen [6]

13.31% Task3 CUHK VerilogCoder [14] 0.34% -97.46%

QwQ 32B
Preview

29.95% Task3 CUHK VerilogCoder [14] 29.96% 0.04%
6.33% Task1 Uni Siegen CorrectBench [28] 6.19% -2.25% 7.14% Task1 Uni Siegen CorrectBench [28] 7.71% 7.95%

Uconn AdvancedLLM [35] 16.18% 68.96% Uconn AdvancedLLM [35] 40.83% 8.78%
Uni Siegen CorrectBench [28] 15.82% 65.22% Uni Siegen CorrectBench [28] 40.50% 8.24%
UNSW [4] 13.58% 41.74% UNSW [4] 40.42% 7.53%
Stevens PromptV [25] 14.25% 48.78% Stevens PromptV [25] 42.86% 14.52%
Nvidia RTLFixer [38] 15.15% 58.17% Nvidia RTLFixer [38] 40.50% 7.71%

9.58% Task2

PKU VerilogReader [23] 14.20% 48.29%

34.90% Task2

PKU VerilogReader [23] 38.72% 3.94%
Nvidia RTLRewriter [44] 19.30% 35.90% Nvidia VerilogCoder [14] 39.45% 117.94%

RTLCoder [20]

14.20% Task3 CUHK VerilogCoder [14] 16.86% 18.68%

Qwen2.5 32B

18.10% Task3 CUHK RTLRewriter [44] 31.90% 76.23%
4.30% Task1 Uni Siegen CorrectBench [28] 4.24% -1.41% 7.14% Task1 Uni Siegen CorrectBench [28] 6.48% -9.23%

Uconn AdvancedLLM [35] 9.37% -26.47% Uconn AdvancedLLM [35] 33.15% -21.32%
Uni Siegen CorrectBench [28] 11.54% -9.48% Uni Siegen CorrectBench [28] 32.37% -23.16%
UNSW [4] 9.88% -22.44% UNSW [4] 33.12% -21.39%
Stevens PromptV [25] 10.86% -14.76% Stevens PromptV [25] 32.83% -22.06%
Nvidia RTLFixer [38] 9.98% -21.72% Nvidia RTLFixer [38] 32.28% -23.38%

12.74% Task2

PKU VerilogReader [23] 9.58% -24.86%

42.13% Task2

PKU VerilogReader [23] 30.99% -26.43%
Nvidia RTLRewriter [44] 11.84% -10.49% Nvidia RTLRewriter [44] 20.76% -23.89%

VeriSeek [39]

13.23% Task3 CUHK VerilogCoder [14] 13.02% -1.58%

DeepSeek
R1 Distill
Qwen 32B

27.27% Task3 CUHK VerilogCoder [14] 30.57% 12.08%

Table 7: State-of-the-Art (SOTA) Performance Comparison
on Benchmarks

Benchmark VerilogEval FVEval RTLLM
HWFixBench

LLM backend Simulator
backendOpen Proprietary

SOTA Perf 94.8$ 35% 99.99% 26.30% 39% 0
SOTA Method [47] FVEval [25] QwQ32 Preview GPT-4o —

In contrast, HWFixBench targets more challenging hardware
designs but prioritizes providing a better starting point for users
rather than enforcing strict simulation pass criteria. With 500 re-
pair instances and more than 1,000 modifications, our benchmark
substantially exceeds the combined scale of existing evaluation
metrics. Moreover, the designs included in our dataset are of sig-
nificantly higher practical value, with more intricate testing and
repair tasks, making HWFixBench a suitable metric for assessing
LLM capabilities in EDA tasks.

6 Conclusion
HWFixBench is a benchmark designed to evaluate the emerging
trend of LLM-driven EDA automation. This work introduces a high-
value benchmark to assess existing and future LLM applications in
hardware design and verification. Through comprehensive evalu-
ations of general-purpose LLMs, fine-tuned models, and prompt-
based methods, we provide a clear performance landscape and
identify challenges in adapting LLMs to hardware-related tasks.

Our findings highlight the significant gap between proprietary
and open-source models, the task-dependent effectiveness of fine-
tuning, and the model-specific nature of prompt methods. They

emphasize that LLM-based automation in EDA requires tailored
approaches rather than one-size-fits-all solutions. The benchmark
is a foundation for future research, guiding the development of
more capable LLMs for hardware applications and providing a
standardized evaluation framework for measuring progress in this
rapidly evolving domain.
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