Large Language Model-Driven Real-World
Applications: An Automated IC Testing System

Weimin Fu*, Gang Quf, Xiaolong Guo*
*Department of Electrical and Computer Engineering, Kansas State University
TDepartment of Electrical and Computer Engineering, University of Maryland
weiminf @ksu.edu, gangqu@umd.edu,guoxiaolong@ksu.edu
Abstract

Large language models (LLMs) have rapidly evolved from simple text-based interactions to accepting and generating multi-
modal information, including images and sound. This advancement opens up new avenues for application in real-world interactions.
We have integrated large language models with automated testing systems to explore these possibilities. Our preliminary exper-

iments, which focused on testing Analog-to-Digital Converters, demonstrate the applications’ feasibility and potential scope.
Through these experiments, we aim to highlight how LLMs can unlock new hardware design and verification process capabilities.

Index Terms
Hardware Auto Testing, Large Language Model, Generative Al
I. INTRODUCTION

Artificial intelligence assistants based on large language models have become the focus of academia, industry, and everyone.
With the transformation of large language models (LLMs) into large multimodal models (LMMs), the hot topic has become
how to stimulate more capabilities and applications by providing the models with more input types. Automated testing is an
excellent entry point for hardware design verification processes and endows LLM with the ability to interact with reality. Also,
employing generative Al technologies has the potential to lower labor costs and enhance the efficiency of hardware testing
processes. We have demonstrated the effectiveness of LLMs in the domain of hardware security, as evidenced by our previous
works [1], [2]. Building on this foundation, in this demo, we constructed an automated integrated circuits (ICs) testing platform
to demonstrate the potential applications of this LLM-based approach across the field. This platform takes the definitions of
inputs and outputs from the IC’s datasheet and the eval board as inputs, uses a meticulously designed experimental procedure,
leverages decisions made by the PC and LLM to control the behavior of the instrumentation, and automatically provides
evaluation results.

II. METHODOLOGY AND EXPERIMENT

As illustrated in Fig.1, the system architecture encompasses four core components: the LLM service, local automated testing
scripts, instrumentation, and the Device Under Test (DUT).

A
PyVISA
Virtual Instrument Software architecture
VISA

. y

DUT PDF Miner Test Vector /

Datasheet Generator 3

[OCSwoy]
== IC Specifications Analyzer =
== Test Result
m==fp- LLM Operation
m—p Test Action
IVI Communication Rep ort Report
— VSIA C < Logﬁle Eval
== Report Output Generator -
Platform

Fig. 1. LLM-Enhanced Automated Testing Platform Architecture: On the left, the DUT Datasheet includes the datasheet for the IC under test and the
interface definitions of the evaluation board; the orange LLM at the top represents ChatGPT used in this experiment; the light green box illustrates the tools
we developed: 1. Knowledge and experience repository for hardware testing, 2. Prompt templates for hardware testing, 3. LLM Action Outline to ensure the
correctness of LLM output formats, 4. Generation of test vectors and their transmission to instrumentation, 5. Analysis and logging; the bottom part shows
the connection to various instrument devices through VISA, which in turn connect to the evaluation board.

The initial step involves deconstructing the datasheet, including the datasheet for the DUT IC and the evaluation board’s
datasheet. We employ PDFMiner to extract crucial textual and tabular information from the datasheets. The prompt-extracted
information is fed into OpenAl’'s GPT-4 API, allowing the LLM to access local DUT data and information about the testing
platform. This process ensures that the LLM comprehends the entity’s control and interaction. We meticulously designed these
prompts to accurately capture and interpret information extracted from the datasheets, including integrated circuit interface
definitions, input/output ranges, and performance benchmarks. We reuse the details in the automated testing scripts as strict
boundaries to prevent damage to the DUT from incorrect data ranges.

Following this, we construct action interfaces based on the OpenAPI specification, strictly limiting the format of GPT-4’s
outputs to ensure the generated test vectors meet technical standards and offer high reliability and repeatability.

Leveraging the PyVISA and IVI libraries, we control various test instruments such as signal generators, oscilloscopes, and
power supplies according to the test plan, setting testing conditions and acquiring results. Fig. 2 depicts the output from the
instrumentation during operation, which is also uploaded to the PC. Compared to expected datasheet results, preliminary local
script analyses of the test outcomes are uploaded to a cloud-based large language model for in-depth analysis. The cloud
model evaluates the correctness of the test results and provides recommendations for subsequent tests, forming closed-loop
feedback until all testing metrics meet the termination criteria.

Upon completing all tests, the system automatically generates a detailed report, including results, comparative analysis, and
potential improvement suggestions. All test data and logs are meticulously preserved for future in-depth analysis and review.

As shown in Table I, most of our instrumentation is connected to the PC via USB, except the 33250A used for generating
analog signals, which utilizes GPIO due to the absence of a USB interface. Despite these differences in connection methods,
the underlying protocol for all devices remains consistent and is based on VISA.

TABLE I
HARDWARE CONFIGURATION

Category Device Name Model Purpose PC Connection Type
Power Supply Keithley Triple Channel DC Power Supply 2230G-30-1 | Supplies VDDI1 and VDD2 power USB

Oscilloscope Tektronix Mixed Domain Oscilloscope MDO3014 Observes waveforms at VDD test point and MDAT port output | USB

Signal Generator | Agilent Function/Arbitrary Waveform Generator | 33220A Provides MCLKIN clock signal USB

Signal Generator | Agilent Function/Arbitrary Waveform Generator | 33250A Provides analog signal input (VIN+) GPIO

ADC ADuM7703 16-Bit, Isolated, Sigma-Delta ADC | ADuM7703 | IC under test -

Evaluation Board | ADuM7703 Evaluation Board - Testing platform -

Furthermore, as outlined in Table II, our system also relies on a suite of software and libraries for data extraction, information
interpretation, and automated control. This includes PDFMiner for extracting information from datasheets, the OpenAl API
for interactions with large language models, and both PyVISA and NIl-visa for the control of hardware devices.

TABLE II

SOFTWARE CONFIGURATION
Category Software Name Version Purpose
Data Extraction Tool PDFMiner 20191110 | Extracts text, images, and tables from IC datasheets
Large Language Model API | OpenAl 1.12.0 Extracts IC interface definitions, input/output ranges, and calibration performance
API Specification OpenAPI Specification | 3.1.0 Defines the interface for interaction with the large language model, ensuring compatibility with backend automation scripts
Automated Testing Control PyVISA 1.14.1 Controls testing equipment such as signal generators and oscilloscopes
Driver Interface ivi 1.14.1 Provides a standard interface for communication with instruments
Driver Program NI-visa 25165824 | Provides underlying hardware control support for PyVISA

Fig. 2. The display of the test tool during automated testing. In the figure, the connections are still manually made. Power sources VDD1 and VDD2 are
connected to the Keithley Triple Channel DC Power Supply, MCLKIN is connected to the Agilent Function/Arbitrary Waveform Generator 33220A, VIN+
is connected to the Agilent Function/Arbitrary Waveform Generator 33250A, Oscilloscope channel 1 is connected to MDAT, and channel 2 is connected to
the VIN+ test point on the eval board. At this time, on the test board, Link LK1 is set to Position B, LK2 is in Position C, LK3 is in Position C, LK4 is set
to Position B, LKS5 is removed, LK7 is inserted, and LK8 is removed. The automated script operates the instruments.

REFERENCES

[1] W. Fu, S. Li, Y. Zhao, H. Ma, R. Dutta, X. Zhang, K. Yang, Y. Jin, and X. Guo, “Hardware phi-1.5 b: A large language model encodes hardware domain
specific knowledge,” 29th Asia and South Pacific Design Automation Conference(ASP-DAC), 2024.

[2] W.Fu, K. Yang, R. G. Dutta, X. Guo, and G. Qu, “Llm4sechw: Leavering domain-specific large language model for hardware debugging,” Asian Hardware
Oriented Security and Trust (AsianHOST), 2023.

