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Abstract—Large Language Models (LLMs) have precipitated emerging
trends towards intelligent automation. However, integrating LLMs into
the hardware debug domain encounters challenges: the datasets for LLMs
for hardware are often plagued by a dual dilemma – scarcity and subpar
quality. Traditional hardware debug approaches that rely on experienced
labor to generate detailed prompts are not cheaply scalable. Similarly,
strategies that depend on existing LLMs and randomly generated
prompts fail to achieve sufficient reliability. We propose a directed, semi-
synthetic data synthetic method that leverages version control information
and journalistic event descriptions. To produce high-quality data, this
approach utilizes version control data from hardware projects combined
with the 5W1H (Who, What, When, Where, Why, How) journalistic
principles. It facilitates the linear scaling of dataset volumes without
depending on skilled labor. We have implemented this method on a
collected dataset of open-source hardware designs and fine-tuned fifteen
general-purpose LLMs to enable their capability in hardware debugging
tasks, thereby validating the efficacy of our approach.

Index Terms—Large Language Model, Artificial Intelligence, Hard-
ware Debug, Version Control, Electronic Design Automation

I. INTRODUCTION

DEBUGGING in hardware design heavily relies on experienced
labor, significantly limiting the adoption of automated and

intelligent methodologies. Very recent mutation-based approaches [1],
[2] have automated the repair of hardware design code at the register
transfer level (RT-Level). However, they rely on reference models,
and their ability to repair is limited to specific bugs due to their use
of templates. Large Language Models (LLMs) signify a new frontier
in automation, achieving a global discourse beyond academia and
industry with the release of ChatGPT3.5 [3] at the end of 2022. This
work utilizes LLMs to facilitate debugging in hardware design by
marking the first adoption of training domain-specific LLMs in this
field, similar to initiatives in other fields.

Notable other fields domain-specific LLMs examples include Doc-
torLM for the medical sector [4], and Disc-lawllm [5] for legal
applications. In the closely related field of software, which shares
similarities with hardware, we have conducted a comparative analysis
of the implementation stages of LLMs. This comparison, detailed in
Table I, examines pre-training, fine-tuning (specifically instruction
tuning), alignment, benchmarks, and the utilization method known
as prompting across software and hardware domains. In software
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development, LLMs participate in a mode known as copilot, where
specially training LLMs generate predictions for potential code.

However, the hardware domain is at odds with the copilot mode
with training. Most approaches are prompt-based but have one chal-
lenge: hallucination, where models generate plausible but factually
incorrect or irrelevant responses. Conversely, if the accuracy of the
generated answers is high, the hallucination problem is mitigated.
Our findings indicate that hallucination is a far more prevalent issue
in the hardware domain compared to the software domain. In the
software domain, a typical benchmark such as Code Generation on
HumanEval [6] has seen top-performing models achieve a pass@1
score as high as 98.2 [7]. Among general-purpose LLMs, the best
performance is by Claude 3.5 Sonnet [8], scoring 90.2(pass@1). In
contrast, the hardware domain’s equivalent benchmark, VerilogEval-
human [9], currently has a top score of 76.2(pass@1) [10], with
the best performance among general LLMs being 61.5(pass@1) by
Claude3-Haiku [11]. This stark difference highlights the more severe
hallucination problem in hardware-related tasks. Reliance on closed-
source LLMs, which do not provide a chance to correct hallucinations
by providing domain knowledge data, suggests prompt-based works
merely capitalize on OpenAI’s efforts. Consequently, the reliability
of generated content is compromised. For reminding hallucinations,
a cautionary note is displayed on the ChatGPT below.

“ChatGPT can make mistakes. Consider checking important information.”

Additionally, the OpenAI’s strategies [12] in the hardware domain
remain a significant concern for effectiveness.

One solution to revise hallucinations is training the LLM with
domain-specific knowledge. But this leads us to another challenge:
the scarcity of data. Without considering data quality and including
the software-hardware interface, the volume of accessible textual
knowledge in the hardware domain is approximately 23 billion
tokens [13]. According to the Chinchilla Scaling Law [14], previ-
ous public datasets can support pretraining models up to 1 billion
parameters, but only models with 70 ∼ 160 million parameters to
reach saturation, which is too small for ideal intelligent performance.
When considering private dataset, ChipNeMo [15] utilizes the dataset
with NVIDIA proprietary code, documentation, and question-and-
answer data, which indicates that the hardware domain LLM assistant
is reachable with private knowledge assets. However, such develop-
ments provide negligible benefits to the broader community beyond
corporate boundaries, as they are not open-sourced.

Therefore, this paper develops a method to construct a dataset that
does not rely on proprietary corporate digital assets. Two common
approaches for constructing LLM training datasets are using raw data
and employing data synthesis. For raw data, when we revisit the three
common LLM dataset sources in the hardware domain—namely,
User-generated content websites, Writers and publishers, and Open-
source code—we identify the following limitations:
• User-generated content websites lack substantial hardware-related

information and tend to close off data access.
• Writers and publishers are unlikely to be reliable sources for

hardware, and the opposition against using the content by LLMs.
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Fig. 1. Construction of a Fine-Tuning Dataset for Hardware Design Changes:
From Isolated File Extraction to Natural Language Description Generation

• Open-source code of hardware designs do not match the software
domain’s quality.

As a result, directly constructing a high-quality and scalable fine-
tuning dataset from raw data is impossible.

Synthetic data, which uses either human resources or artificial
intelligence agent to generate data, is a viable approach. RTL-
Coder [16] employs random instruction and ChatGPT for code
generation. Nonetheless, challenges persist; modern LLMs are still
far from becoming hardware experts, requiring detailed prompts or
comprehensive tutorials. The deviation from the desired automation
process suggests that synthetic methodology is not practical.

To solve the above problems, we propose a Semi-Synthetic
approach, leveraging version control information between hardware
design iterations to guide data synthesis. These narratives utilized
the widely accepted 5W1H (Who, Why, What, Where, When, and
How) journalism theory [17], effectively transitioning the task from
hardware domain specific to reading comprehension. According
to Chatbot Arena [18], modern high-performance LLMs (such as
ChatGPT-4.0, Gemini 1.5 Pro Exp (0801), Claude 3.5 Sonnet, LLama
3.1 405B, and LLama 3.1 70B) are considered superior to the original
version of GPT-4. GPT-4, in 2023, demonstrated proficiency by
achieving a score of 169 on the GRE Verbal [19], surpassing 99%
of test-takers (most of whom are fresh graduates). Therefore, any
modern high-performance LLM emerges as an exemplary candidate
for the data semi-synthetic. As shown in Fig. 1, the initial isolated
hardware designs were from single-version releases of open-source
hardware projects. Once integrated with information from the version
control system, changes in each file within the projects are identified.
Subsequently, an LLM agent is introduced to create a modeling
method and design prompts that facilitate the generation of natural
language descriptions for each identified design change. Finally, these
elements are reassembled to construct a fine-tuning dataset, which
is then utilized in the SFT process. Compared to directly using
LLMs to solve problems based on prompts (e.g., [20]), our semi-
synthetic method provides additional information for the same input
(specifically, the next version of the hardware design). Introducing
this additional information eliminates uncertainty [21], making our
approach more reliable. The main contributions of this paper are:

1) We build an RT-level hardware debug dataset using version control
information of hardware design iterations. By leveraging data from
both new and old versions of hardware designs instead of the
exhaustive prompts crafted by humans, creating a scalable LLM
SFT dataset is possible. The Semi-Synthetic approach is universal,
generalizable, and applicable to any magnitude of data collection.

2) This work employs the 5W1H narrative method to extract and
utilize the version control data information. This interdisciplinary,
innovative approach is inherently capable of describing code
functionalities, issues, and solutions, maximizing the efficient use
of all information within the dataset, and reducing the need for
extensive human intervention.

TABLE I
COMPARATIVE OVERVIEW OF DOMAIN SPECIFIC LARGE LANGUAGE
MODEL DEVELOPMENT AND APPLICATION ACROSS SOFTWARE AND

HARDWARE DOMAINS

Stage Software Domain Hardware Domain

Pre-training
Codegen [22], CodeLlama [23],

StarCoder [24]
HardwarePhi [13],

ChipNeMo [15]

Supervised
Fine-Tuning

WizardCoder [25], Octopack [26]
LLM4SecHW [27],

RTLCoder [16]
ChipNeMo

Alignment RLTF [28], Pangu-coder2 [29] RTLCoder

Prompt Codet [30], Lever [31]
[32], [33],

AssertLLM [34],
DIVAS [35]

Benchmark
BigCodeBench [36],

HumanEval [37],SWEBench [38]
VerilogEval [9],

RTLLM [34]

3) Leveraging modern LLM reading capabilities to identify design
issues by comparing versions sidesteps the challenge of hardware
code analysis. The strategy maximizes the existing LLM potential
by comparing different versions of information, thereby avoiding
the hallucination that arises when facing challenging content.

4) We have fine-tuned 15 LLMs on this dataset to validate the feasi-
bility. We have shown it effectively improves model performance
in real-world scenarios.

Note, the 5W1H hardware debug dataset is available on Hugging-
face1. This dataset includes 6, 545 entries, each structured around
hardware design versions before and after bug fixes. Each entry
contains detailed explanations using the 5W1H framework. The
dataset is organized as follows:

• Original: The original version before the bug fix.
• Modified: The updated version after the fix.
• Semi-Syntectic Data: One detailed explanation with specific

5W1H question.

II. BACKGROUND

A. Large Language Model Dataset
The intelligence of LLMs is regarded as a compression of the training
datasets [39], making these datasets the most crucial component of
LLMs. Fig. 2 illustrates the four training phases of an LLM-based
assistant: pre-training, supervised fine-tuning (SFT), reward model-
ing, and reinforcement learning. It details the algorithms, datasets,
and representative tasks associated with each phase. Data for each
phase are categorized into three types based on their source: natural
for data that is unprocessed and used as-is from original corpora;
synthetic for data that humans or AI has additionally processed; and
hardware domain, which is specifically segregated considering our
focus on the hardware field. This section introduces these datasets,
organized by the training phases and data sources outlined earlier.

1) Pretrain Dataset
Natural: The datasets C4 [40] and Redpajama [41] are utilized for

representing internet-based datasets. C4 specifically collects and pro-
cesses internet data, focusing on deduplication, removing non-English
content, and filtering out offensive language. Redpajama combines
sources from Wikipedia and StackExchange, similar to C4, and is
often used alongside it [42]. For code datasets, Starcoder [24] emerges
as the largest, drawn from GitHub. It exclusively includes projects
under MIT, BSD, and Apache licenses to minimize restrictions
Synthetic: Costs exceeding millions of dollars during the pretraining
stage result in constraints on synthetic data. There are still some
attempts being made. Phi1 [43] has utilized ChatGPT to cleanse the

1https://huggingface.co/datasets/KSU-HW-SEC/5W1HHardwareDebug

https://huggingface.co/datasets/KSU-HW-SEC/5W1HHardwareDebug
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Fig. 2. Training Pipeline for LLM Assistants. In the pretrain phase, the
raw textual content is used with a language modeling algorithm, creating the
base model. The supervised fine-tuning phase uses ideal responses to specific
prompts as a dataset, producing the SFT Model. The Reward Modeling phase
introduces preference training through user selections. The final reinforcement
learning phase uses prompts and preference scoring to produce the RL Model.
The pretrain dataset is high-volume but low-quality, while the next stages
require high-quality human or agent generation data.

12.6%

77.8%

Hardware 0.3%

Hardware, 0.3%
Others, 0.4%
Scripting Language, 0.8%
Data Analysis, 2.9%
Markup Language, 5.2%
Typesetting Languages, 12.6%
General-purpose PL, 77.8%

Fig. 3. Classification of code repositories on GitHub by application, repro-
duction of StarCoder receipt: hardware-related code constitutes 0.3%, with a
potential underestimation error of 10%.

raw data. For multimodal models, LLaVA uses LLMs to generate
annotations to alleviate data scarcity [44].

Hardware Domain: As demonstrated in Fig. 3, aggregating and
analyzing open-source hardware projects by the StarCoder receipt, a
data scarcity challenge in the hardware domain, only 1.711GB, stop
hardware domain achieved positive LLMs outcomes.

As shown in Fig.4, the HardwarePhi dataset is the largest open-
source pretrain dataset for the hardware domain by 2024 Spring, yet
its scale is insufficient to meet the demands of the pre-training phase
for modern LLMs; conversely, any further increase in the dataset’s
size would require to purchase costly assets from commercial.

2) Supervised Fine-tuning Dataset
SFT is noted for its efficiency and potential to achieve significant

outcomes. The diversity of fine-tuning datasets started to emerge
once it was recognized that fine-tuning could substantially enhance
model performance. Alpaca [45] was the pioneer in releasing a
large-scale open-source fine-tuning dataset, choosing a synthetic data
approach that propelled synthetic data into the mainstream. Training
AI using AI-generated data carries inherent risks, such as the potential
for model collapse [46], which may introduce irreversible defects.
Consequently, manually curated data retains significant value despite
its higher cost.

Natural: OpenAI hired approximately 1,000 remote contractors

CommonCrawl 51.17 %

Arxiv 2.272 %

C4 7.98 %

Wikipedia 0.86 %

Book 18.51 %
GitHub Repo 7.70 %

CWE 0.00027 %

Trust-Hub 7.83 %

StackExchange 0.46 %
CAD 3.23 %

HardwarePhi dataset

GitHub Repo Filtered 85 %

Textbook 15 %

VeriGen dataset

Instruction 32 %

Response 68 %

RTLCoder dataset

Ratio: 308×

Ratio: 3.3×

Fig. 4. Three typical datasets in the hardware domain include HardwarePhi, a
pretrain dataset, and VeriGen and RTLCoder, which are fine-tuning datasets;
the figure illustrates the composition and size ratios.

from Latin America and Eastern Europe from April to December
2021, with around 60% engaged in data labeling tasks, producing
a substantial volume of images, audio clips, and other data forms
to train AI tools [47]. No Robots [48] crafted a manually created
dataset of 10, 000 entries. OASST1 [49] is a large, high-quality,
human-written conversation dataset aimed at generating more natural
responses from LLMs.

Synthetic: Alpaca leveraged the GPT-3 API with input from Self-
Instruct [50] to collect responses, setting a trend in using OpenAI
services for data synthesis. With the release and enhancements of the
ChatGPT API, projects such as GPT-4-LLM [51] and multimodal
datasets like LLaVA Instruction [44] have utilized the GPT-4 API.

Hardware Domain: As shown in Fig 4, VeriGen [52] and RTL-
Coder are two famous SFT datasets that have embarked on distinct
paths. VeriGen, through the aggregation of hardware designs from
GitHub and textbooks, has amassed a 400MB dataset and has reached
its scalability limit, making expanding the dataset size challenging
without incurring significant costs.

The RTLCoder has employed GPT-3.5 to generate Verilog source
code from random instructions, followed by syntax verification
through simulators, yielding 27k question-answer pairs. However,
general-purpose LLMs exhibit perplexities in hardware-related tasks
[53], leading to data quality concerns. An automated generation
always results in similar results; the data are remarkably alike, leading
to redundancy within the dataset, such as 24 4-bit counters, 11
FIFO buffers, and 42 4-to-1 multiplexers. We see that these hardware
implementations in RTLCoder need more practical significance.

3) Reward Modeling and Reinforcement Learning
Reward Modeling emulates human preferences by providing re-

wards during training to tune LLMs. The ultimate aim of developing
and enhancing LLMs is to benefit humanity by assisting people
in addressing complex challenges in the real world. Meanwhile,
Reinforcement Learning from Human Feedback (RLHF) occurs when
a language model generates text and then receives a score or
reward from a human annotator that assesses the quality of the text.
While Reward Modeling and RLHF are not identical, they are often
discussed together due to their shared idea of enhancing performance.

Natural: HH-RLHF [54] is a pairwise dataset designed for training
reward models in reinforcement learning to enhance the harmlessness
and helpfulness of LLMs. WebGPT [55] is specifically utilized to
train the reward model in RLHF, focusing on web-based interactions.

Synthetic: Since this training phase requires aligning the model’s
outputs with human behavior, no synthetic data meets the perfor-
mance standards necessary for such applications.

Hardware Domain: In contrast to typical dialogue processing, the
hardware domain benefits significantly from robust automated metrics
at this stage. Key metrics include PPA (Power, Performance, Area),
emulator circuit synthesis reports, and performance reports based on
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a fixed test bench [16], [56]. In the software domain, the approach of
integrating unit tests, compilation feedback, and OS feedback from
the execution process into a comprehensive reward function [57] and
limiting the range of LLM generated tokens by additional prediction
algorithms [58] offers an innovative and heuristic method. This
strategy provides valuable inspiration for potential applications in
the hardware domain, where similar techniques could be adapted to
enhance the reliability and performance of hardware design processes.

B. Fine tuning technique
Fine-tuning is taking pre-trained models and further training them
on smaller, specific datasets to improve performance in a particular
task or domain. The techniques for fine-tuning are thus termed
because they only minimally alter the model’s behavior. Low-Rank
Adaptation (LoRA) [59] and Llama Adapter [60] are two common
fine-tuning methodologies. LoRA achieves updates through low-
rank decomposition, representing weight updates using two smaller
matrices called update matrices. These new matrices are trainable
and can adapt to new data while maintaining a lower total number of
parameters, with the original weight matrix remaining frozen. Llama-
Adapter adds a set of learnable adaptation prompts before the input
instruction tokens. The instruction output tokens from the input prefix
guide the generation of contextually responsive prompts.

C. Limitation of Fine-tuning method on hardware domain
Suppose we have a pre-trained dataset datasetpt and a fine-tuning
dataset datasetft, and the function fLLM () represents the training
result of an LLM. Ideally, we would expect the following inequality
to hold as shown in Equation 1, which suggests a preference for
maximizing the benefits derived from the pre-training phase. | ∗ |
shows the performance of LLM training on a specific dataset.

|fLLM (concat(datasetpt, datasetft))| <
|fLLM (datasetpt)|+ |fLLM (datasetft)|+O(1) (1)

Ideally, the two datasets should exhibit a certain degree of consis-
tency, as outlined in Equation 2. This consistency ensures that the
model’s fine-tuning performance can benefit from the foundational
knowledge gained during pre-training.

Distribution(F (datasetpt)) ∼= Distribution(datasetpt) (2)

A challenge in the hardware domain is that the distribution of knowl-
edge in the typical pre-trained datasets for general-purpose LLMs
differs significantly from that in the hardware domain. This disparity
leads to sub-optimal utilization of the unsupervised pre-training
benefits. The significant divergence in the distribution between the
pre-trained dataset (implicitly present in the pre-trained model) and
the fine-tuning dataset leads to previous fine-tuning performances on
raw data [27] that only partially meet expectations.

Given the mismatch between datasetpt and datasetft, we have
identified two potential solutions:
1) Modify datasetpt to incorporate significant knowledge from the

hardware domain.
2) Alter datasetft to align more closely with the descriptive norms

of general-purpose language models.
Considering the discussion in Section II-A1, implementing the

first option using open-source knowledge in the hardware domain
is impractical. Therefore, we opted for a natural language style
description approach, aligning datasetft more closely with the data
format used in general LLM pre-training.

D. Version Control, Git and GitHub
In data management, version control is crucial in transient and
fluctuating data. Among the available tools, Git is the leading choice
for managing code and text-based content [61]. GitHub, as an

augmentation of the Git, offers an online interface for developers
to collaborate on and contribute to projects. It boasts numerous
features, such as Commits, Pull Requests (PRs), and Issues, as well
as streamlining code versioning, review, and collaboration.

A commit in Git delineates changes made to the files within a
repository. Each commit has a unique identifier, usually a hash,
along with metadata that includes the author, date, and a message
explaining the reason for the change. A commit message succinctly
conveys the purpose of the modification, its justification, and potential
implications. PRs, on the other hand, enable developers to propose
code alterations for integration into another branch. A typical PR
encompasses a title, description, multiple commit details intended
for merging into the main project, and discussions within the team.
Should a PR aim to address a specific challenge or task, it frequently
associates with a corresponding Issue.

Issues are used to track and manage bugs, feature requests, tasks,
and other relevant concerns in a project. Often initiated by users, these
concerns are communicated through feedback. An issue typically
includes tags such as bug, enhancement, and help wanted, which
help team members quickly identify and address specific concerns.

E. 5W1H problem-solving method
In journalism, the 5H1H is a checklist used to ensure that the
first paragraph contains all the essential points of a story. The
5W+1H term abbreviates six key questions: who, why, what, where,
when, and how. This framework encapsulates the primary elements
most individuals seek in news reporting, providing a comprehensive
approach to gathering and presenting information. In the book Just So
Stories, British author Rudyard Kipling [62] introduced the 5W+1H
model in 1902. Journalists subsequently adopted this news reporting
model, which has become widely utilized. From the perspective of a
journalist, to effectively convey a story, it is essential to provide the
reader with basic information about six key questions [17], [63]:

1) Who performed the actions reported or experienced the out-
comes? (Actor)

2) Why did these actions occur? (Motive)
3) What are the actions, and what are their consequences? (Content)
4) Where did the actions take place? (Location)
5) When did the actions occur? (Time)
6) How are these actions interconnected? (Causality)

III. WORKFLOW

Fig. 1 illustrates the overall workflow of our study. The subsequent
sections provide a detailed explanation of each critical step involved
in this process.

In Section IV, we begin by discussing the rationale for utilizing
version control data as fine-tuning material for Chatbot LLMs, which
forms the foundational basis of our approach (see Subsection IV-A).
Following this, we outline the criteria for selecting target hardware
designs, which not only define the scope of our methodology but also
leverage the reliability of data sourced from reputable open-source
projects to ensure the validity of our raw data (see Subsection IV-B).
We then describe the design of our web crawler, emphasizing how
we effectively gather training data and ensure that the collected
data is pertinent to the themes of bug detection and fixes (see
Subsection IV-C).

In Section V, we first introduce a modeling approach based on
the 5W1H framework and discuss how we enhance data using
LLMs. This method offers a straightforward, general, and effective
modeling strategy that contrasts with the increasingly detailed prompt
engineering trends, representing an innovative approach grounded in
our rigorous analysis of hardware debugging (see Subsection V-A).
Subsequently, we delve into constructing the semi-synthetic dataset,
categorized into short code, long code, and documentation. For each
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category, we employ distinct modeling strategies to address the con-
text length limitations of LLMs (see Subsection V-B). Subsequently,
we demonstrate transforming the raw materials into a fine-tuned
dataset. This step involves the final restructuring of the dataset,
wherein the data is reorganized into a QA format suitable for fine-
tuning the model. (see Subsection V-C).Next, we discuss our model
selection process, which spans from smaller models (7B) to larger
models (70B), encompassing both general-purpose LLMs and code-
specific LLMs (primarily for software), as well as an alternative MoE-
based approach (Mixtral 8×7B) (see Subsection V-D). Finally, to
facilitate the reader’s understanding of subsequent evaluations, we
briefly introduce the concept of pass@k in Subsection V-E.

IV. COLLECT RAW DATA: FROM ISOLATED TO SEQUENTIAL

In this section, we describe the methodology employed for collecting
raw data. Unlike the StarCoder Recipe discussed in Section II-A1,
our approach incorporates a version control system, adding a tem-
poral dimension to the data. This modification transforms each data
element from an isolated, static hardware design into one that evolves
over time. Consequently, this change naturally captures information
about hardware modifications, providing a solid foundation for our
subsequent modeling efforts.

Fig.5 articulates the framework for constructing the target dataset.
This section introduces the lower part of the graph, which is the
basis of the whole methodology. We first explore the rationale behind
utilizing version control information for fine-tuning LLMs, specifi-
cally those operating in chatbot mode. Subsequently, we discuss our
selection of hardware projects, followed by a detailed explanation of
our web crawling algorithm designed to retrieve all pertinent version
control information.

A. Why Version Control Information Can Serve as a Training Dataset
for LLMs Operating in Chatbot Modes

The LLM-based Chatbot assistant consistently strives to answer
specific questions. The combination of red and orange arrows on
the right side of Fig. 5 illustrates a typical real-world scenario: when
a user inputs information, the expected response is either a reply or a
modification to the input. Although users may not consciously iterate
on a specific version, this process mirrors the version control.

The primary purpose of a Version Control System is to log all
modifications. Version Control serves as a database that captures
snapshots of a project at any given moment and offers a precise
explanation of the project’s evolution. As Fig. 5 illustrates, different
versions are represented by teal circles at the bottom, while black
arrows indicate changes. These variations between versions may
arise for many reasons, such as feature additions, bug fixes, and
performance enhancements. These modifications are directly related
to content from previous versions, and more precisely, they often
address deficiencies in earlier designs.

Our approach is inspired by the usage patterns of the Chatbot
assistant, contrasting with the copilot pattern that often attempts to
suggest potential code. Given the similarities in working patterns
(user interaction versus version control information), information
derived from version control can be utilized as training datasets.

B. Target Hardware Project Selection
The initial step is raw data collection. In this phase, our approach
diverges distinctly from other works in the field. Unlike Verigen
mentioned in Section II-A2, which utilizes various independent code
segments and textbook examples, our criteria for including open-
source projects in our dataset are stringent. We filtered the open-
source hardware projects based on the following conditions: 1) active,
with evidence of updates and iterations, 2) popular, widely used
with substantial user feedback, and 3) pragmatically significant,
the projects must aim to solve specific, real-world problems. This

DV1
DV2

DV3

event1

Feature Add

event2

Bug Fix

events

From Past

events

To Future

Who

What

WhereWhen

Why

How

Actual Use InterfaceData Synthesis

question

design
response

Synthetic Data

Version 1

Version 2

Fig. 5. Methodology for Data Collection: Extracting Version Control Informa-
tion, Applying 5W1H Journalistic Techniques, and Constructing Datasets for
Supervised Fine-Tuning of LLMs. The paths for synthetic data and questions
are represented in shades of blue and orange, in which transparent and original
functions are equivalent. This indicates only one path is activated per time.

selection process enhances the dataset’s quality and improves the
performance of the resulting trained LLM.

After careful selection, we have chosen to include the 20 projects
in our study. These projects, written in Verilog and SystemVerilog,
originate from various organizations and encompass a wide range
of components, including SoC, MCU, core, cache, IC, FPGA, APU,
wireless module, and GPU. In the following sections, we will intro-
duce some of the typical examples. SoC projects include ibex [64]
and OpenTitan [65] from lowRISC. Ibex is a production-quality
open-source 32-bit RISC-V CPU core written in SystemVerilog and
licensed under Apache 2.0. OpenTitan is an open-source silicon Root
of Trust project that enhances transparency and security. It is written
in SystemVerilog and licensed under Apache 2.1.

The OpenHW Group contributes to several projects across different
domains. The core-v-mcu project [66] is a RISC-V MCU that pro-
vides efficient processing capabilities. It is written in SystemVerilog
and licensed under the Solderpad Hardware License. Their core archi-
tectures, including cv32e40p, cv32e40s, cv32e40x, cv32e41p,) [67]
and cve2 [68], focus on RISC-V cores, written in SystemVerilog
and utilizing either the Solderpad Hardware License or Apache
License. Additionally, cv hpdcache [69] is a high-performance, multi-
requester, out-of-order L1 Dcache for RISC-V cores and accelerators,
written in SystemVerilog and licensed under the Solderpad Hardware
License. The core v polara apu project [70] has 4 RISC-V vector cores
connected using the OpenPiton platform, written in SystemVerilog
and licensed under the Solderpad Hardware License.

LowRISC’s CPU designs include CVA5 [71] and CVA6 [72].
CVA5 is a 32-bit RISC-V processor written in SystemVerilog and
licensed under Apache 2.0, while CVA6 is a 64-bit RISC-V processor
with a 6-stage pipeline, written in SystemVerilog and licensed under
the BSD 3-Clause license. The cvw project from the OpenHW Group
is another CPU design written in SystemVerilog.

Additionally, there are projects in other domains: Neopixel TX
Core by asm2750 is an IC designed for controlling Neopixel LED
strips, written in Verilog and licensed under Apache 2.0; all spark
cube by chadharrington is an LED control project comprising a cube
with 4096 LED lights, written in Verilog and licensed under MIT;
miaow [73] by the Vertical Research Group is a GPU implementing
AMD’s Southern Islands GPU ISA, written in Verilog and licensed
under BSD 3-Clause.

C. Web Crawler design
We developed a web crawler to facilitate version control information
collection. A mere git clone operation cannot acquire comprehen-
sive version control information for these projects. Instead, a more
sophisticated approach is necessary to extract each project’s version
history and metadata. Therefore, we employ the GitHub REST API
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Algorithm 1: Iterate through GitHub repositories to collect
HDL modification

Data: GitRepo = [”Repo1”, ”Repo2”, ...]
Result: pre and post-modification of each file
for each repo in GitRepo do

SolvedIssue = ClosedIssue[label = Bug];
PR = PR linked to SolvedIssue;
commits = Get merge PR for the repo;
for each commit in commits do

for each file in Get modified HDL files(commit) do
Get preContent, postContent;
dataset.Add(preContent, postContent);

end
end

end

to retrieve detailed information on commits, issues, and Pull Requests
(PRs) from repositories. We filtered issues labeled as ”bug” or with
similar descriptions and then traced them forward to identify the
merged PR associated with these issues. From these PRs, we extracted
the commits and the corresponding file modifications from these
commits. The specifics of our crawling algorithm are presented as
pseudocode in Algorithm 1.

Following Algorithm 1, we generate two versions of code, namely
preContent and postContent, for each modification made to the
hardware design programming codes (.v, .verilog, .vlg, .vh, .sv, .svh
extensions) or documents (.txt, .md extensions) within the repository.
We systematically crawl through all the commits within the project
repository for each hardware project. We gather the files affected by
the modifications made during each commit. Utilizing the commit’s
SHA hash and the filename, we precisely access the content of
the files before and after the changes, referred to as preContent
and postContent, respectively. Algorithm 1 allows us to capture the
modifications between any consecutive versions and store them as
paired data entries within the raw dataset.

After the crawl, we obtained 967 code and 125 documentation
pairs, which can be utilized for fine-tuning directly. Compared to
prior work [27], this represents a significant increase in raw data
collected. By introducing patches as a comparative element alongside
long code and documentation, we have broadened our coverage to
encompass more general scenarios within hardware design projects.
Furthermore, the rigorous selection of open-source hardware projects
has resulted in a higher-quality dataset than previous work.

V. SEMI-SYNTECTIC AND FINE TUNING DATASETS

Following the discussions in Section II-C, it is essential to transform
raw data into descriptions that approximate natural language. We
focus on code changes designated as events rather than contrasting
code with code. These events encapsulate the deficiencies of the old
version and the enhancements made in the new version, reflecting
the intellectual effort and time invested by project maintainers.

In Equation 3, issues and patches are defined to minimize human
involvement in this process. Within projects documented by version
control systems, for any two consecutive versions i and j of the
same file, we leverage the variations between Design Versioni(Dvi)
and Design Versionj(Dvj ) to strategically identify potential issues
issuei inherent in Dvi , and solution is patchj .

issuei = CodeDVi
\ CodeDVj

patchj = CodeDVj
\ CodeDVi

(3)

An issue refers to code that existed in the old version but was
removed in the new version; conversely, a patch denotes code added

in the new version relative to the old one. The description of such
events can be effectively articulated using the 5W1H method. The
descriptions derived from the raw data set are referred to as a semi-
synthetic dataset because they are produced from both new and old
version data, employing a fixed event journalism description method,
and generated by an LLM, but are constrained to fixed content.

A. 5W1H in hardware domain
We redefine the 5W1H framework specific to the hardware domain
as follows:

1) Who: To whom does the module for the code belong?
2) What: What is the modification addressing the bug?
3) Where: Where is the issue located?
4) Why: Why is the modification necessary?
5) When: When was this specific change prompted?
6) How: How was the modification executed?

B. Semi-Synthetic Dataset
Fig. 5 depicts our approach to directed semi-synthetic data generation.
We feed the collected raw data and these defined questions into a
general-purpose LLM to extract answers. This process yields a four-
part metadata group comprising two versions of hardware design, the
questions, and responses from the LLM agent.

Due to the inherent limitations of transformer models, an LLM can
only effectively utilize data within a specified content window. This
necessitates merging the input within this content window. Although
recent advancements have significantly increased the allowable con-
tent window length, the scale of hardware designs often surpasses
these limits. More critically, our method, which requires input from
two versions of hardware design simultaneously, necessitates a trade-
off in the overall design length. Consequently, we have devised three
distinct generation templates in below to mitigate the issues arising
from the doubled spatial occupancy.

1) Short Code
When a hardware design’s tokenized length is less than 2048

tokens, we classify it as shortcode. We use the following template
for such cases: DVi , DVi+1 combined with the 5W1H questions.
Example: In a hardware modification, DV1 is updated to DV2 . Why
is the modification necessary?

2) Long Code
For designs exceeding 2048 tokens post tokenization, we clas-

sify them as long code. We employ the following template: DVi ,
patch∆i→i+1, combined with the 5W1H questions. Although the-
oretically, no information is lost for this change, using a patch
inherently raises the expertise required of the user, representing a
trade-off in performance.
Example: In a hardware modification, DV1 receives an update
patch∆i→i+1. What is the modification addressing the bug?

3) Documentation
We apply the same approach to documentation as the long code.
Our semi-synthetic dataset comprises 1091 entries detailing hard-

ware design changes. This includes 156 instances classified under
long code and 125 instances of hardware documentation.

Table II illustrates a typical example of automated generation used
in our study. We acquired pairs of old and new version design codes
from the raw dataset from Section IV-C. These code pairs originate
from the OpenHW Group’s Core-V microcontroller project, specifi-
cally from the RTL source code simulation-related portion, identified
as a2 bootrom.sv. This dataset includes six Research Questions (RQs)
corresponding to the 5W1H method discussed in Section V-A.

We label the old and new source codes and pose specific questions
to an LLM agent based on these versions. The questions are designed
to elucidate the modifications and their implications, utilizing the
5W1H framework. The responses generated by the general LLM
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TABLE II
CLAUDE 3 SONNET TRANSFORMING VERSION CONTROL INFORMATION INTO SEMI-SYNTHETIC HARDWARE DEBUG DATA USING THE 5W1H

APPROACH

Old version design code New Version design code

module a2_bootrom #(
parameter ADDR_WIDTH = 11,
parameter DATA_WIDTH = 32

) (
input logic CLK,
input logic CEN,
input logic [ADDR_WIDTH-1:0] A,
output logic [DATA_WIDTH-1:0] Q

);
logic [31:0] value[(2**ADDR_WIDTH)-1:0];

initial begin
$readmemh("mem_init/boot.mem", value);

end

always @(posedge CLK) begin
Q <= value[A];

end
endmodule

module a2_bootrom #(
parameter ADDR_WIDTH = 11,
parameter DATA_WIDTH = 32

) (
input logic CLK,
input logic CEN,
input logic [ADDR_WIDTH-1:0] A,
output logic [DATA_WIDTH-1:0] Q

);
logic [31:0] value[(2**ADDR_WIDTH)-1:0];
logic [31:0] read_data;

initial begin
$readmemh("mem_init/boot.mem", value);

end

always @(posedge CLK) begin
if (CEN == 0) begin

read_data <= value[A];
Q <= value[A];

end else begin
Q <= read_data;

end
end

endmodule

Source: OpenHW Group / CORE-V MCU: rtl/simulation/a2 bootrom.sv

RQ1: What is the function of Hardware design code?
Response:
The original hardware design code defines a module for a boot ROM (Read-Only Memory), which is a type of memory that stores firmware. When the system
is powered on, the CPU may read this boot ROM to load and execute initial boot or system initialization code. The module is parameterized to allow for
different address and data widths, making it flexible for various memory sizes. The ROM content is loaded from a file (`mem init/boot.mem`) at simulation
time, and the data is output (`Q`) based on the input address (`A`) on every positive edge of the clock (`CLK`).
RQ2: What bug was fixed in Hardware design code?
Response:
The bug fixed in the modified code addresses a situation where the ROM output (`Q`) is updated on every positive clock edge, regardless of whether the
chip enable signal (`CEN`) is active or not. In the original code, the absence of checking the `CEN`signal means the ROM is always enabled, potentially
leading to unintended reads and conflicts with other memory devices or operations.
RQ3:Where are the statements and variables related to the bug? Which modules, circuits, interfaces or signals are involved in the bug?
Response:
Modules/Circuits/Interfaces/Signals Involved: The bug involves the `always @(posedge CLK)`block, specifically how it interacts with the `CEN`(Chip
Enable) input signal, and the `Q`output signal. The `value`memory array and the address input `A`are also involved as they are part of the data read process.
RQ4:When was the bug introduced((requirements analysis stage, design stage, coding stage, etc.))? What impact will it have on the entire hardware?
When Introduced: This bug was likely introduced during the coding stage. The initial design and requirements analysis might have correctly identified the
need for a chip enable mechanism, but the implementation failed to account for it correctly.
Impact: Without considering the `CEN`signal, the ROM could interfere with other components on the bus by driving the `Q`output when not selected. This
could cause data corruption or erroneous system behavior, especially in systems designed to switch between multiple memory devices.
RQ5: How to fix the bug?
Response:
The bug is fixed by adding a conditional check for the `CEN`signal within the `always @(posedge CLK)`block. If `CEN`is low (active low convention),
the ROM is enabled, and the read operation proceeds, storing the read data in a temporary variable (`read data`) before assigning it to `Q `. If `CEN`is
not active, the output `Q`retains its previous value, effectively disabling the ROM from interfering with other operations on the bus.
RQ6: Why did the modification occur?
Response:
The modification was necessary to ensure that the ROM only responds when explicitly enabled by the `CEN`signal. This change makes the module more
robust and compatible with systems that multiplex access to various memory devices, preventing the ROM from outputting data when it is not selected. This
adheres to common hardware design practices where memory devices are controlled by enable signals to manage their interaction with a shared bus.
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agent are illustrated in Table II. This structured approach enables
a systematic analysis of the code evolution within the project,
leveraging the capabilities of advanced language models to interpret
and describe changes in an understandable format.

C. LLM Fine-tuning Dataset
We propose transforming our semi-synthetic dataset into a fine-
tuning dataset by reorganizing the semi-synthetic dataset introduced
in Section V-B. This transformation is detailed as Equation 4.

DVi

5W1H Question

}
User-interested Question

Synthetic data →Theoretical Response (4)

For the semi-synthetic dataset mentioned in Section V-B, each data
point consists of 1) a pair of consecutive hardware design versions, 2)
a fixed question, and 3) the corresponding model-generated response.
This format mapped to a new format that aligns more directly with
practical application needs as shown in Equation 5.

(DVi, DVi+1, Fixed Question,Response) →
(User-interested Question,Theoretical Response) (5)

Through this map, we generate a dataset that can be utilized for
fine-tuning LLMs, thus aligning synthetic generation with practical
operational demands. Following the 5W1H model, each entry in
the semi-synthetic dataset has been subdivided into six distinct
elements, resulting in 6546 data points. Regarding the reliability
of the generation task, we observed a single-generation accuracy
of 99.7%. Out of the 1, 092 pairs of hardware instances, only four
instances resulted in slightly inaccurate responses. However, in these
four cases, when the conversation was continued, the LLM provided
correct answers in the subsequent round of responses. As a result,
all data in the final dataset are accurate. To further ensure accuracy
and mitigate the risk of undetected hallucinations, we employ cross-
validation using the commercial LLM Claude 3 Sonnet and the open-
source LLaMA 2 70B. We conducted multiple generations (Claude
twice and LLaMA 2 three times) and compared the results, as
hallucinations are typically random and unlikely to converge in the
same direction across different models. Due to variations in tokenizer
specifications and content length restrictions among different models,
models may not utilize the entire dataset during fine-tuning.

D. Fine tuning Target Model Choice
As discussed in Section II-C, for a model to show improved per-
formance and generalization capabilities on specific problems after
fine-tuning, the fine-tuning dataset must have a similar distribution
to the pre-training dataset. However, while open-source models are
available, the datasets used for training these models are often pro-
prietary and not publicly disclosed. Consequently, we must navigate
two variables within the “black box” of foundation models: 1) the
differences in performance attributable to the model design, including
architecture and parameter size, and 2) the variability in the quality
of different pre-training datasets. The models we utilized are listed in
Table III, which includes details such as model name, the total num-
ber of parameters, tokenizer used, context window size, and average
scores across six benchmarks indicating the model’s intelligence: AI2
Reasoning Challenge [74] (25−shot), HellaSwag [75] (10−shot),
MMLU [76] (5−shot), TruthfulQA [77] (0−shot), Winogrande [78]
(5 − shot), and GSM8k [79] (5 − shot). The scores for GPT-3.5
were provided by Vellum.ai [80], while the remaining scores were
sourced from the Huggingface LLM leaderboard [81].

Our selection encompasses a diverse range of mainstream LLMs,
including open-source options such as LLama2, CodeLLama, Phi,

TABLE III
LLM FOUNDATION MODELS INFORMATION

Model Parameter Tokenizer Content
Length

Average
Score

Dolly 3B [82] 3B Pythia 2048 22.83
Dolly 7B [82] 7B Pythia 2048 39.24
Codellama 7B [23] 6.74B CodeLlama 16384 39.81
Codellama 13B [23] 13.02B CodeLlama 16384 43.35
Codellama 70B [23] 68.98B CodeLlama 16384 58.93
Llama2 7B [83] 6.74B Llama 4096 50.97
LLama2 13B [83] 13.02B Llama 4096 55.69
LLama2 13B chat [83] 13.02B Llama 4096 54.91
Llama2 70B [83] 68.98B Llama 4096 67.87
Phi1.5 [84] 1.5B codegen-mono 2048 47.69
Phi2 [85] 2.78B codegen-mono 2048 61.33
Mixtral 8×7B [86] 46.7B Llama 32000 68.42
GPT3.5 Turbo N/A cl100k base 4096 65.46
Stablecode 3B [87] 2.8B GPTNeoX 16384 41.53
Falcon 7B [88] 6.92B Falcon 2048 44.17

Mistral, Falcon, and Dolly, as well as private model ChatGPT-3.5
Turbo, which offers a paid fine-tuning service. These foundation
models exhibit a wide range of capabilities, with average scores on
six benchmark tests varying from 22.83 to 68.42, which we consider
indicative of the models’ inherent intelligence prior to fine-tuning.

We employed two fine-tuning approaches for models with a
size of 7 billion parameters or fewer: LoRA and Llama Adapter.
These methods were chosen to enhance model adaptability without
extensively increasing parameter count. For models exceeding 7
billion parameters, computational resource constraints led us to use
Quantized LoRA (QLoRA) [89], which quantizes the base model’s
weights to 4−bits, thus reducing memory usage.

E. LLMs Performance Metric
A common metric LLMs use to evaluate domain-specific tasks (code
generation evaluation, for example) is the pass@k metric [6]. The
metric roughly indicated the probability of obtaining one correct
response when generating k prompt completions. For this work, we
use the expression in Equation 6 described as a numerically stable
and statistically unbiased method for computing pass@k.

pass@k =

{
1, if n− c < k

1−
∏n

i=n−c+1(1−
k
i
), otherwise

(6)

where c is the number of correct responses, and n is the total number
of responses generated by the model. We have selected pass@1 as
our evaluation metric, where n = 10 represents each LLM having
ten attempts, and c denotes the number of correct responses.

VI. EXPERIMENT

Our experimental section consists of two parts. The first part details
the technical aspects and results of fine-tuning LLMs, focusing
on SFT configuration and training performance. It also provides
a comprehensive overview of the fine-tuning process. The second
part of the experiment evaluates the performance of these fine-tuned
models on a validation set of tasks related to detecting and fixing
hardware vulnerabilities. It also includes assessing the models’ ability
to recognize (pass@1) vulnerabilities under test.

A. Supervised Fine-tuning
We employed three training platforms and fine-tuning strategies to
balance the selection of model parameter scale and training costs, as
detailed in Table IV. The Training Token illustrates each model’s ca-
pacity to process training datasets. Different LLMs employ tokenizer
implementations bound to their respective models to accomplish the
initial step of mapping textual information to embedding spaces.
Different tokenizer choices and context window sizes result in varying
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TABLE IV
TRAINING CONFIGURATION PARAMETERS FOR LARGE LANGUAGE MODELS

model Training
Token

Accerator Duration
(Hour)

Epoch Optimizer Learning
Rate

Learning Rate Scheduler PEFT Adapter Training Loss
Decay Warmup Fraction

Phi1.5 4502221 1 A100 40G 0.94

3 AdamW 0.0003

Cosine

0.01

LoRA
(R:8,

alpha:16,
dropout:0.05)

1.0103
Phi2 4502221

3 A100 40G

1.55 1.3057
Dolly3B 4410489 0.69 1.1636
Dolly7B 4410489 1.39 1.1190
Falcon7B 4348393 2.09 1.2217
Llama2 7B 5556856 7.16 0.5728
StableCode 3B 18246844 7.12 0.8427
CodeLLama7B 20550919 17.16 0.4267
Llama2 13B 5400089

1 A10 24G
15.45

4 PagedAdam 0.0002 0.03

QLoRA
(R:8,

alpha: 16,
dropout: 0.01,

quantization: 4bits,
type:bfloat16)

4.5653
Llama2 13B-chat 5400089 15.55 4.2543
CodeLLama13B 5400089 15.52 1.2156
LLama2 70B 5400089

1 A100 80G
37.35 1.5546

CodeLLama 70B 5400089 37.13 1.2444
Mistral8× 7B 5305148 16.34 1.7434
Phi1.5 4502221 1 A100 40G 3.44

5 AdamW 0.0001 0.01 Llama-Adapter

1.5169
Phi2 4502221

3 A100 40G

4.19 0.8903
Dolly3B 4410489 1.5 0.5503
Dolly7B 4410489 5.63 0.6819
Falcon7B 4348393 5.66 0.9781
Llama2 7B 5556856 5.04 0.4136
StableCode 3B 18246844 7.88 0.9743
CodeLLama7B 20550919 16.11 0.2929
ChatGPT3.5 Turbo 0125 47236815 N/A 20.6 3 N/A N/A N/A N/A N/A 0.9846

amounts of usable data from the same dataset for SFT in this
experiment. For instances where the length of the data exceeds the
context window size, we opted to discard the data rather than truncate
it. This preference stems from the typical structure of our data, which
consists of a sequence in Equation 7.

{hardware design raw code, question, response} (7)

An excess length often indicates that the hardware design compo-
nent occupies much space, potentially leading to truncation of the
response. This could sometimes result in entries not containing the
response. Such truncation undermines the model’s ability to learn the
intended tripartite relationship between design, question, and answer
during fine-tuning. Therefore, we chose to discard these overly
lengthy entries to prevent the model from encountering additional
confusion during training.

The Accelerator column lists the accelerators used for each training
project. Four configurations were provided: a single Nvidia A100
40G, three Nvidia A100 40Gs, a single Nvidia A10 24G, and a
single Nvidia A100 80G. The column Duration indicates the training
duration in hours, followed by the number of training epochs. This
process, known as fine-tuning, primarily involves minor adjustments
to the model’s original parameters. Our training was conducted
over 3, 4, and 5 epochs, which mitigates the risk of overfitting: a
shorter training cycle is less likely to significantly alter the original
parameters to fit the fine-tuning dataset, reducing the likelihood of
overfitting.

The learning rate and learning rate scheduler columns indicated
the learning rate and its adjustment strategy. We implemented a cos
Decay strategy to gradually reduce the learning rate, finely control-
ling the pace of parameter updates during training. Additionally,
a Warmup Fraction was used during the initial phase of training,
where the learning rate gradually increases from a lower baseline to
the set initial value over a certain proportion of the total training
time, enhancing the model’s stability in the initial stages. The PEFT
Adapter column provides details of the PEFT Adapter, including rank,
quantization, and others.

Training Loss column shows the model’s efficacy on the training
dataset, illustrating how effectively the model encodes the knowledge
contained within that dataset. This metric serves as an indicator of
the model’s foundational performance, exclusive of its generalization
capabilities. This column reports the model’s loss on the training set
upon completion of training. Although the training duration using the
Llama Adapter is longer than that with LoRA, it demonstrates su-
perior performance on training metrics. Consequently, in subsequent
analyses, only the versions of smaller models fine-tuned using the
Llama Adapter will be tested. The

In the experiments, QLoRA’s memory usage is 66.38% of that of
LoRA, while the LLama adapter consumes approximately 119.76%.
Given these figures, adapter training exhibits superior performance
compared to LoRA. Simultaneously, QLoRA conserves memory,
facilitating the training of larger models. The benefits of increased
model scale outweigh the precision losses and the negative impacts
of the LoRA method. Consequently, QLoRA offers advantages in
fine-tuning large models under resource constraints.

B. Validation Dataset Test Bench
We have selected a subset of 15 pairs (1.3%) from 1092 hardware
iterations to serve as our validation dataset. As outlined in Table V,
this dataset includes one negative test case, with the remaining four-
teen encompassing a variety of updates: adding features, enhancing
validation, correcting bugs, and patching potential vulnerabilities. We
assess the model’s performance on hardware debugging tasks before
and after fine-tuning. We define bug detection as the process in which
the LLM identifies issues within the hardware, and bug fixing as the
process of providing effective solutions to those identified issues.
The outcomes on the validation dataset are classified into four levels,
utilized in Table VI and Table VII:

• × Bug could not be identified.
• △ Bug was detected but described inaccurately.
• ⃝ Bug was correctly identified, but no accurate correction

suggestion was provided. (Bug Detection task)
• ✓ Provide Appropriate correction advice. (Bug fix task)

We also include pass@1 for hardware bug detection as a reference.
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TABLE V
15 TEST BENCH INSIDE THE VALIDATION DATASET

# Module Function Code Changes

1 piso shift register
Parallel-In Serial-Out
(PISO) shift register

data reg <= 0; →
data reg <= {WIDTH{1’b0}}

2 pinmux wkup
For a pin multiplexer

wakeup control
cnt q == wkup cnt th i →

cnt q >= wkup cnt th i

3
riscv hwloop
controller

Manage hardware loops
in a RISC-V processor

current pc i == hwlp end addr i[i] →
current pc i + 4 == hwlp end addr i[i]

4
cv32e40x wb
stage sva

SVAs for write-back (WB) stage added new assertion (a nonlsu error)

5
aes mix single
column

mix a single column of
the state matrix in AES

assign z muxed[0] = (op i
== CIPH FWD) ? 8’b0 : z[0]; →

assign z muxed[1] = (op i
== CIPH FWD) ? 8’b0 : z[1];

6 uart transceiver
UART transceiver module

for the Milkymist VJ SoC project
if (enable16 && tx busy) begin →

if (1 && tx busy) begin

7 qf rhw
A module to store, update,

and output data
Negative case

8 prim subreg
A programmable sub-register
within a larger digital system

wr en buf and q buf are unnecessary →
remove

9 ROM Read-Only Memory
Addressing starts from 8’h01 instead of 8’h00,
incorrect branching instructions and data values

10 jtagdpi
A DPI component for

a JTAG interface
ctx = 0; → ctx = null;

11
class chip sw
lc ctrl

transition vseq
UVM

get otp token uses c dpi cshake128,
potentially bypasses specific

decoding/manipulation of LC CSRs

12 NICNAC16
Control seven-segment display

and generate a CPU clock
parameter MAX COUNT = 5 000 000 -1; →

parameter MAX COUNT = 2 000 000 -1;
13 a2 bootrom A verilog module for a boot ROM Q <= value[A]; without checking CEN

14 cube controller LED cube
Add a test panel select n
signal for test panel mode

15 cv32e40x pma
PMA check mechanism for

the CV32E40X processor module
Added check for misaligned accesses

handled by PMA configuration

C. Performance on Validation dataset
To illustrate our approach to bug detection and fixing, we used
a specific example from [90]. For the Bug Detection task, the
conversation with the LLM would proceed as follows:
• User: There may be a bug in the following hardware design code.

Identify the bug and Locate the statements and variables related to
it.Hardware Design [90]2

• FT-LLama2 Response: The bug pertains to the handling of the
op_i signal during the conditional assignment to z_muxed. In
the original code, the z_muxed values were assigned to zero
unconditionally for the forward cipher operation (CIPH_FWD) but
did not explicitly handle the inverse cipher operation (CIPH_INV),
potentially causing incorrect behavior during decryption. The bug
is related to the following blocks and variables:
– Variables: z_muxed[0] and z_muxed[1]
– Statements:

∗ assign z_muxed[0] = (op_i == CIPH_FWD)? 8’b0
: z[0];

∗ assign z_muxed[1] = (op_i == CIPH_FWD)? 8’b0
: z[1];

For the Bug Fix task, the conversation would proceed as follows:
• User: There may be a bug in the following hardware design code.

Explain how to fix the bug. Hardware Design [90]
• FT-LLama2 Response: The bug would be fixed by adding a

condition to check if the operation performed is CIPH_INV (cipher
inverting). When this condition is met, the z[0] is assigned to
z_muxed[0] and z[1] is assigned to z_muxed[1]. This ensures
the code always outputs the correct data based on the current
operation mode.

Table VI shows the performance of untrained models on the validation
dataset. Most original models, especially those with fewer parameters,
exhibited zero performance on both tasks under consideration. We
specifically show Phi1.5 and CodeLLama7B as representative models
with this minimal performance, while these models may achieve
comparable scores to larger models on specific LLM metrics.

Among the open-source models, LLama2 70B had the best per-
formance, completing 3(20%) of the Bug Detection tasks (achieve

2In the actual conversation, here is the hardware design code from [90]

TABLE VI
ORIGINAL MODEL PERFORMANCE OF BUG DETECTION AND BUG FIX

TASKS ON VALIDATION DATASET

Module #
ChatGPT3.5

Turbo
ChatGPT4

Turbo
LLama2

70B Phi1.5 Codellama
7B

1 × × × × ×
2 △ ⃝ × × ×
3 △ △ × × ×
4 × × × × ×
5 △ ⃝ ⃝ × ×
6 × △ × × ◦
7 × ⃝ × × ×
8 × ✓ △ × ×
9 × △ × × ×
10 △ △ × × ×
11 △ △ ⃝ × ×
12 △ △ × × ×
13 ✓ ✓ ✓ × ×
14 × × × × ×
15 × × △ × ×
Bug Detection 1(6.7%) 5(33.3%) 3(20%) 0 1(6.7%)

Bug Fix 1(6.7%) 2(13.3%) 1(6.7%) 0 0

⃝) and 1(6.7%) of the Bug Fix tasks (achieve ✓), surpassing the
performance of the proprietary, paid LLM, ChatGPT3.5 Turbo. The
best-performing model overall was ChatGPT4, which accomplished
5(33.3%) Bug Detection tasks and 2(13.3%) Bug Fix tasks.

As demonstrated in Table VII, there was a noticeable improvement
in the performance on two specific tasks after fine-tuning. Specifi-
cally, we observed that while models with a capacity under 7B could
exhibit some improvement through fine-tuning (from 0% to 6%),
these changes are not particularly significant. Although these smaller
models are more accessible to train and less costly, their baseline
performance is relatively poor, and the capacity to assimilate domain-
specific knowledge through fine-tuning is limited.

Models with 7B parameters reach the performance levels of
the untrained GPT-4. However, despite having similar parameter
counts, differences in hardware-specific knowledge in their pre-
training datasets lead to varying performance outcomes post-fine-
tuning. Among the four 7B models, Dolly 7B performed the weakest,
showing almost no correlation with hardware content. Falcon 7B
ranked slightly higher but failed to complete bug-fix tasks, indicating
minimal hardware knowledge. In contrast, Codellama7B and Llama2
7B, both from the Meta Llama project, performed better, suggesting
that their shared general-purpose code datasets positively influenced
their hardware task performance. Despite similar performance in bug
detection (53.3% vs. 53.3%) and bug fix tasks (13.3% vs. 6.7%),
CodeLLama is superior due to its longer context window length,
which is more advantageous in coding environments.

As model size exceeded 7B parameters, quantization became
necessary due to resource constraints, yet the benefits of larger models
remained significant despite potential performance degradation. In
bug fix tasks, the performance of Codellama 13B (20%) exceeded
that of Codellama 7B(13.3%), reflecting the advantages of increased
parameter count. However, in bug detection tasks, Codellama 13B
saw a performance decline (33.3%) compared to the 7B version
(53.3%). A similar pattern was observed with Llama2.

When further scaling up the models, quantization allowed for using
even larger models under limited computational resources, which
helped mitigate the adverse effects of reduced precision. Larger
models like Llama2 70B and Codellama 70B exhibited exceptional
performance, with Llama2 70B completing 60% of bug detection
tasks and 40% of bug fix tasks. The achievements are notable, given
that these tasks were framed in real-world scenarios. The Mistral
8 × 7B model, with a smaller scale (56B parameters) and lower
memory requirements, still demonstrated commendable performance.

In contrast, the performance of ChatGPT3.5 Turbo, fine-tuned with
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TABLE VII
FINE-TUNED MODEL PERFORMANCE OF BUG DETECTION AND BUG FIX TASKS ON VALIDATION DATASET

Module # Phi1.5 Phi2
Dolly

3b
Dolly

7b
StableCode

3b
Falcon

7b
Codellama

7b
Codellama

13b
Codellama

70b
Llama2

7b
Llama2

13b
Llama2
13b chat

Llama2
70b

mixtral
8× 7b

Finetuned
GPT3.5 Turbo

Ablation
LLama2 70B

1 △ △ △ △ ⃝ △ × × × ✓ × × × × ✓ ×
2 × × × × × × △ × × ⃝ △ △ × × ⃝ ×
3 × × × × × × ⃝ ✓ △ ⃝ ⃝ ✓ ✓ ✓ ⃝ ×
4 × × × × × × ⃝ ✓ ✓ × ✓ ✓ ✓ × × ⃝
5 × × × × × × ✓ ⃝ ⃝ ⃝ ✓ ⃝ ✓ ✓ ⃝ ×
6 × × × × × × ⃝ ⃝ △ ⃝ △ △ ✓ △ △ ×
7 × × ⃝ × × × ⃝ △ ⃝ △ △ △ ✓ ✓ ⃝ ✓

8 × × △ × △ ✓ × ⃝ △ ⃝ × △ ✓ △ × ×
9 △ × × ⃝ × × ✓ × ✓ × ✓ ⃝ × ✓ △ ×
10 ⃝ △ × △ △ × ⃝ ✓ ⃝ ⃝ △ ✓ ⃝ ✓ ✓ ×
11 × × × × × ⃝ △ △ △ △ △ △ △ △ △ ×
12 × △ × △ ⃝ ⃝ △ △ ✓ ⃝ △ △ △ ⃝ △ ×
13 △ × × × × × ⃝ ⃝ ✓ △ △ × ⃝ ⃝ ✓ ⃝
14 × × × × × × × × × × × × × × × ×
15 × × × × × × × ⃝ ✓ × ⃝ ✓ ⃝ △ × ×
Bug Detection 1(6.7%) 0 1(6.7%) 1(6.7%) 2(13.3%) 3(20%) 8(53.3%) 5(33.3%) 8(53.3%) 8(53.3%) 5(33.3%) 6(40%) 9(60%) 7(46.7%) 7(46.7%) 3(20%)

Bug Fix 0 0 0 0 0 1(6.7%) 2(13.3%) 3(20%) 5(33.3%) 1(6.7%) 3(20%) 4(26.7%) 6(40%) 6(40%) 3(20%) 1(6.7%)

OpenAI’s paid service, did not show a clear advantage over other
models. Considering the fine-tuning cost of nearly $400, compared
to about $50 for tuning other large models on the cloud, ChatGPT3.5
does not represent a cost-effective investment.

Concurrently, Table VIII illustrates that when considering the
pass@1 result for the bug detection task, GPT-4 stands out as the only
LLM with the potential to address the challenge effectively. GPT-4
can reliably complete the task for 6% of the designs, generates at
least one correct answer in 12% of the cases after five attempts,
and achieves a correct response once every ten tries in 20% of the
tasks. The performance of others is negligible by comparison; for
instance, GPT-3.5, on average, requires 30 attempts to produce a
correct answer, while LLama2 13B need 142 attempts on average.

Significant performance improvements are observed post-fine-
tuning in medium—to large models. The fine-tuned LLama2 70B
averages just 2.6 attempts to generate a correct answer. Despite its
inability to generate correct analyses in 40% cases, expanding the
dataset size, which is our method’s strength, could mitigate this issue.

In our study, we also conducted an ablation experiment on our best-
performing model, Llama2 70B. We retrained the model using only
the collected version control dataset, omitting the 5W1H modeling
while keeping the fine-tuning parameters. The results revealed that,
while the ablation model solved some new problems compared to
the original version, it lost the ability to solve a subset of previously
handled issues. As a result, the overall performance of the ablation
model was comparable to that of the original model. However, both
models significantly underperformed compared to the version fine-
tuned with the semi-synthetic dataset incorporating 5W1H. These
findings demonstrate that the semi-synthetic dataset and the 5W1H
modeling approach can significantly enhance model performance.

In conclusion, the performance tests on hardware debugging tasks
conducted with our models after fine-tuning demonstrate that our
dataset enhances the performance of general-purpose LLMs in the
hardware domain. All the results above effectively validate the
efficacy of our semi-synthetic dataset construction methodology.

VII. RELATED WORK

Typical prompt-based approaches [91], [92] implicitly include efforts
to reduce the dependency on general-purpose LLMs for hardware
expertise. These methods often involve manually crafted complex
tutorials [93] or a random combination of basic designs [16]. How-
ever, our approach, which utilizes version control information and
the 5W1H pattern, offers three advantages:

1) Fully automated process, using mature LLMs for a generation.
The cost of data generation is linearly related to the scale of the
data and does not depend on labor with specific expertise.

2) Fully directed generation. Although no additional tutorials or
prompts are provided to constrain the behavior of the LLM, the
continuity between two versions of the same design ensures that
the generated content is inherently aligned with the direction of
the development iterations, much like how two points on a plane
dictate the direction of a line.

3) Comprehensive problem descriptions and solutions. Although we
do not always require a full 5W1H description, this framework
thoroughly summarizes the issues and solutions in a hardware
design, allowing for further process automation.

Compared to the approach [15], [94], our work does not rely on
Retrieval-Augmented Generation, which shows performance degra-
dation in non-demo scenarios, and it is not dependent on data
specifically constructed for particular LLMs. We have observed that
the data quality generated by GPT-3.5, GPT-4, and Mistral 8× 7 is
remarkably similar, indicating that we do not expect general-purpose
LLMs to possess the capabilities of hardware domain experts. This
assumption aligns with the current performance standards of modern
general-purpose LLMs. Additionally, our approach does not depend
on proprietary datasets from corporations, and we believe our method
maintains excellent performance across any dataset, demonstrating
considerable versatility.

VIII. DISCUSSION

A. Supervised Fine-Tuning Enhances LLM Performance in Hardware
Domain Tasks

SFT with our dataset in our testing led to significant performance
improvements for LLMs. For models with non-zero success rates in
both pre-and post-tuning phases, the performance on the bug detec-
tion task improved by 287.5%. For the bug fix task, there was a 400%
increase. A comparative analysis across different models revealed
that the fine-tuned ChatGPT3.5 Turbo exceeded the performance of
GPT4, while Codellama 7B and Llama2 7B outperformed the original
70B version. Despite these models not being designed explicitly
for hardware-related tasks, the semi-synthetic dataset significantly
enhanced their capabilities in this domain. Contrasting with previous
efforts, our work transitions from a proof-of-concept to a scalable
approach for dataset generation and validates its effectiveness in real-
world scenarios.

B. Pretrain still effect finetuned model
We observed that the intrinsic traits of the original models, shaped by
their pre-training datasets, persisted even after fine-tuning with our
dataset. These traits are especially noticeable in the models’ response
styles, which differ markedly across various architectures and sizes.

For instance, the Llama2 13B model tends to generate descriptions
in natural language, evident in its detailed explanations of hardware
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TABLE VIII
pass@1 OF BUG DETECTION TASK ON VALIDATION DATASET

Original Model Fine-tuned model Ablation
GPT

4
GPT
3.5

Mixtral
8× 7B

Codellama
70B

Llama2
70B

Code-llama
13B

Llama2
13B chat

Llama2
13B

GPT
3.5

Mixtral
8× 7B

Codellama
70B

Llama2
70B

Code-llama
13B

Llama2
13B chat

Llama2
13B chat

Codellama
7B

Llama2
7B

Dolly
7B

Dolly
3B

Falcon
7B

StableCode
3B

Phi
1.5

Phi
2

LLama2
70B

DUT
0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0 0 0

2 0.1 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0

3 0 0 0 0.1 0 0 0 0 0.3 0.2 0 1 0.1 0.2 0.4 0.2 0.1 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0.7 0.1 0.1 0.2 0.2 0.1 0 0 0 0 0 0 0 0.5

5 0.1 0 0.2 0 0.2 0 0 0 0.3 0.5 0.2 1 0.1 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0.7 0.4 0 0 0.2 0.1 0 0 0 0 0 0 0

7 0.2 0.2 0 0 0 0 0 0 0.2 1 0.6 0.3 0 0 0 0.1 0 0 0.1 0 0 0 0 0.3

8 0.1 0.1 0.3 0.1 0 0 0 0 0 0 0 1 0.1 0 0 0 0.1 0 0 0.1 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0.9 0.2 0 0 0.1 0.5 0.2 0 0.1 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0.6 1 1 0.1 1 0.4 0.1 0.2 0.3 0 0 0 0 0.1 0 0

11 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0

12 0 0 0 0.1 0 0.1 0 0 0 0.2 0.2 0 0 0 0 0 0.2 0 0 0.1 0.1 0 0 0

13 1 0.2 0.4 0.5 0.2 0.1 0.1 0.1 0.2 1 0.5 0.9 0.3 0 0 0.1 0 0 0 0 0 0 0 0.4

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0.7 0.7 0.6 0.7 0.2 0 0 0 0 0 0 0 0 0

Overall 0.1 0.033 0.06 0.053 0.04 0.013 0.007 0.007 0.133 0.32 0.273 0.387 0.18 0.12 0.107 0.087 0.08 0.007 0.007 0.02 0.013 0.007 0 0.08

design codes and interfaces:

... for a Serial Peripheral Interface (SPI) host IP. This module
interfaces with a TileLink (TL-UL) bus, handling transactions

In contrast, Codellama 13B retains more of the coding language,
including variable names and more technical descriptions:

... between the host and the SPI device, including sending data
(tx data o) and signaling when data is valid (tx valid o),...

The Llama2 70B model combines both approaches, offering com-
prehensive explanations that incorporate narrative and details:

... managing the data flow between the SPI host and the TX FIFO.
It outputs data (tx data o), byte enable signals (tx be o), ...

The Mixtral 8× 7B model delivers the most intriguing responses,
generating structured, highly detailed, and functional content:

...Key Functionalities:
• Window Management: The module manages the TX FIFO

window based on the input win i and outputs win o...

These examples highlight that when a base model is initially
trained on actual documentation, it tends to replicate the format and
style of those documents. As a result, even after fine-tuning, it retains
these distinctive features, emphasizing the significant impact of pre-
training characteristics on model behavior in specific applications.

IX. CONCLUSION
We developed an automated method for generating semi-synthetic
datasets, validating its effectiveness in hardware debug tasks using
general-purpose LLMs. Despite limitations due to scarce raw data,
our approach enhances data utilization efficiency and allows scalable,
fully automated data generation without expert involvement. This
success integrates LLMs into the hardware domain. Our method
avoids redundancy and low quality by using real-world data compared
to existing hardware synthetic methods. We plan to expand its
application through future partnerships.
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