
Enhancing LLM Performance on Hardware Design Generation
Task via Reinforcement Learning

Yifang Zhao∗, Weimin Fu†, Shijie Li∗, Yi-Xiang Hu∗, Xiaolong Guo†, Yier Jin∗‡
∗University of Science and Technology of China, {zhaoyifang, shijie li, yixianghu}@mail.ustc.edu.cn, jinyier@ustc.edu.cn

†Kansas State University, {weiminf, guoxiaolong}@ksu.edu

Abstract—Integrated circuit design is a highly complex and time-
consuming process. Leveraging large language models (LLMs) for au-
tomating hardware design generation is receiving increasing attention. A
prominent challenge is that the inherent structure of the text is overlooked
during the training process. Existing efforts focus on supervised fine-
tuning LLMs to acquire specialized knowledge in hardware design,
without considering the conflict between LLMs’ linear data processing
and the structural nature inherent in hardware design. In this work,
we propose a novel LLM-based reinforcement learning (RL) framework
that integrates Abstract Syntax Trees (ASTs) and Data Flow Graphs
(DFGs). Our approach enhances the accuracy of generated hardware
code by capturing the syntactic and semantic structures of hardware
designs. Experimental results show that the SFT-RL model integrated
with Text, AST, and DFG achieves notable improvements: a 12.57%
increase on VerilogEval-Human and a 5.49% increase on VerilogEval-
Machine, outperforming GPT-4; a 14.29% improvement on RTLLM,
approaching GPT-4.

Index Terms—Hardware code generation, Reinforcement learning,
Large language model.

I. INTRODUCTION

The integrated circuit (IC) design process is a complex workflow,
including IC specification, circuit design, physical design, physical
verification, and final sign-off [1]. Advances in fabrication technology
have dramatically increased the scale of digital chips, with transistor
counts often exceeding tens of billions. Simultaneously, the market
demand for accelerated product updates compels design engineers to
accurately manage more modules, interfaces, and logic layers within
compressed timeframes. Since hardware cannot be modified after
fabrication, ensuring a correct design from the outset is critical.

With the widespread use of ChatGPT [2] around the world,
researchers from various fields have turned their attention to the
study of large language models (LLMs). In the hardware domain,
researchers are exploring ways to utilize LLMs as automated tools, in-
cluding hardware debugging [3]–[5], hardware design generation [6]–
[12], assisting in hardware verification by assertions [13] and aiding
in formal verification [14]. These studies leverage hardware-specific
datasets and fine-tune general-purpose LLMs to lower the barrier to
entry for hardware design and development.

However, existing models often produce low-quality code that is
unsuitable for real-world applications. First, supervised fine-tuning
(SFT) heavily depends on labeled data, often not rigorously screened,
leading to biased outputs or hallucinated responses [15]. Second,
hardware design is highly structured and requires the capture of
complex interactions between different components. However, the
traditional LLM training process primarily focuses on the semantics
for token prediction, resulting in a linear understanding of the text,
which hinders the accurate generation of hardware design.

To address these challenges, a promising approach for hardware
code generation is to align LLM outputs with human experts through
Reinforcement Learning with Human Feedback (RLHF) [16], a strat-
egy proven to substantially improve LLM performance [2], [17]–[19].

‡Corresponding author.

While collecting high-quality data from experts is often impractical,
prior research indicates that reward functions can effectively guide
LLMs by selecting high-quality outputs without requiring extensive
human evaluation [20]. Therefore, designing a robust reward model
that incorporates structural consideration is critical for guiding LLMs
to generate high-quality hardware code.

The AST (Abstract Syntax Tree) and DFG (Data Flow Graph)
representations in hardware design are widely used for code analysis,
optimization, and verification [21]–[23]. These studies demonstrate
that graphical representations effectively capture the logic of hard-
ware designs, thereby enabling comprehensive code analysis. Our
work introduces a reward approach integrating two critical analytical
perspectives: AST and DFG. The AST captures the hierarchical
syntactic structure of hardware designs, representing relationships
between components such as modules, control structures, and opera-
tions. The DFG models the flow of data within the design, reflecting
operational dependencies and interactions between hardware compo-
nents. Incorporating both AST and DFG as rewards in reinforcement
learning (RL) enables the model to capture the functional and ar-
chitectural characteristics of hardware designs, assess output quality,
and progressively refine decision-making during content generation.
This approach ensures that the LLM produces code that is not
only syntactically accurate but also structurally coherent, effectively
addressing the limitations of traditional token-based LLM training.

Our Contribution: This work proposes a novel approach incor-
porating ASTs generated by parsers and DFGs produced by dataflow
analyzers into the LLM training process. This allows the model to
maintain syntactic integrity (via ASTs) and semantic integrity (via
DFGs), addressing the limitations of LLMs’ linear data processing
when applied to hardware design tasks. Additionally, we provide a
more comprehensive reward mechanism during training by combining
multiple scoring criteria—textual similarity, syntactic structure, and
dataflow consistency. Experiments show that this method significantly
improves the functional correctness and syntactic accuracy of the
generated hardware code, enhancing the applicability of LLMs in
hardware design.

II. BACKGROUND AND RELATED WORK

A. LLM-based hardware design Generation

Prompt-based methods focus on designing prompts to guide
general-purpose LLMs in generating hardware code, such as [11]
and Chip-Chat [6] based on ChatGPT, ChipGPT [10] based on
Claude [17], Autochip [12] based on ChatGPT, Claude, PaLM [24]
and CodeLlama [25]. However, due to the lack of professional
knowledge, general-purpose LLMs often misunderstand terminol-
ogy, making it difficult to generate high-quality, standards-compliant
designs, such as inserting syntax logic that conforms to software
development into hardware designs. This prompt engineering method
demands substantial domain-specific expertise post-processing to
meet hardware design requirements.



To overcome these limitations, SFT is employed, utilizing datasets
comprised of functional descriptions and corresponding code. Verilo-
gEval [8] demonstrated that SFT can enhance the Verilog code gener-
ation capabilities of pre-trained models and provided two comprehen-
sive evaluation benchmarks, VerilogEval-machine and VerilogEval-
human. RTLCoder [7] introduced an automated training dataset
generation flow that leveraged GPT-3.5 and a syntax checker, and
performed SFT based on quality scoring, demonstrating superior
performance over GPT-3.5. ChipNeMo [26] utilized a substantial
amount of internal hardware design-related data from NVIDIA,
outperforming the state-of-the-art GPT-4 in the cases of engineering
assistant chatbots and EDA script generation. However, its closed-
source nature restricts its broad application. Although these fine-
tuning models show promise for general hardware generation tasks,
they overlook the contradiction between LLM’s linear data processing
and hardware design structural characteristics, resulting in limited
management of the structural complexity of RTL design.

B. Conflict Between Linear Data Processing and RTL Structure

Based on the 1D Transformer [27], LLMs process data linearly,
token-by-token. The model processes an ordered sequence of input
tokens one by one and sequentially generates each output token until
a complete sequence is produced. It excels at sequential tasks such as
coherent text generation, information summarizing, language transla-
tion, and other NLP tasks [28]. However, this linear method becomes
less effective when applied to domains with highly structured or par-
allel data [29], such as hardware design or programming languages.
Unlike natural language, many operations in hardware design are
executed concurrently, with different modules interacting in complex,
hierarchical ways. Traditional transformer models struggle to capture
these characteristics effectively. RTL code demands a more structured
approach, which the current Transformer architecture cannot handle.

C. Addressing Structural Design with Graph Level Representation

Hardware designs involve complex structures that require precise
modeling of both control flow and data dependencies. Graph-level
representation provides an effective means. For example, [23] applies
ASTs and CFGs to convert synchronous RTL models into asyn-
chronous designs, with ASTs capturing syntax and CFGs managing
control flow and concurrency. RTL-FSMx [21] extracts finite state
machines from RTL code using ASTs and CFGs, aiding in hardware
security and design verification by providing a graph-level view of
control flow. RTSEC [22] employs ASTs to integrate security features
like watermarking and logic locking into RTL designs, ensuring these
enhancements align with the hierarchical structure of the code.

D. Reinforcement Learning

Reinforcement learning (RL) originates from trial-and-error learn-
ing and optimal control. The formalization of RL through Markov
Decision Processes (MDP) provides a robust framework for finding
optimal strategies. Unlike traditional LLM training methods, which
typically rely on labeled data and extract patterns from large datasets
in a linear manner, RL enables learning through interaction with an
environment. An agent learns from experience, receiving rewards or
penalties based on the outcomes of its actions, thereby refining its
decision-making over time [30].

In the hardware domain, RL has been applied to Logic Synthesis
Optimization [31], Design Space Exploration [32], Task Scheduling
in Hardware Accelerators [33], and Circuit Layout Design [34]. These
applications demonstrate RL’s ability to tackle complex optimization
problems in IC design by exploring various strategies dynamically
and improving performance metrics over time.

Fig. 1: Enhancing hardware code generation through reinforcement
learning incorporated with AST and DFG.

Fig. 2: Reward Score Design: Text, AST, DFG.

III. METHODOLOGY

To address the misalignment between the linear data processing
of LLMs and the structural characteristics of RTL designs, we
conduct reinforcement training across three dimensions: Text, AST,
and DFG. These complementary metrics help to capture sequential
and structural aspects of hardware design to guide the model’s
learning, aiming to enhance the accuracy and quality of generated
hardware code. The overall framework is illustrated in Figure 1.

Our framework follows these key steps: ➊ Dataset Construction:
We build a dataset of functional descriptions of hardware designs
paired with corresponding codes. The functional descriptions act as
Instructions, while the original code serves as a Reference design
for evaluating generated outputs. ➋ Code Generation: Using the
base model, we generate multiple versions of hardware code based
on these descriptions. ➌ Reward Score: Each generated code is
compared to the reference design from three dimensions—Text, AST,
and DFG—to calculate similarity scores as the reward. ➍ Preference
Dataset Creation: The reward scores rank the generated outputs,
creating a preference dataset that identifies the best and worst
responses. ➎ Reinforcement Training: Finally, we apply RL to
fine-tune the model. RL guides the LLMs by providing feedback
based on preference signals, enabling the model to learn to align its
responses more closely with the desired outcomes, thereby effectively
optimizing its performance based on cumulative rewards.

A. AST and DFG Generation

To capture the AST and DFG of hardware designs, we employ the
RTL synthesis tool Yosys [35]. The process begins with preprocessing
directives such as include instructions and macro definitions. The
Lexer then conducts lexical analysis, decomposing the Verilog code
into a series of tokens that contain keywords, identifiers, constants,
and operators. The Parser converts the Verilog code into an AST,
where each node embodies a construct within the code, such as an
assignment statement, a conditional statement, or a module declara-
tion. We can systematically analyze the design’s logical structure,
including conditional branches, loops, etc. This process ensures
that the design’s foundational syntactic information is preserved for
further analysis and optimization.

Although Yosys cannot directly generate a DFG, we can use
commands proc to expand control logic and show to export the design



structure. By using Python scripts to parse the exported data, we
can identify data dependencies and operations needed to construct
a DFG. This semantic view complements the syntactic information
provided by the AST, offering insights into the functional behavior
and execution dependencies of the hardware design.

B. Reward Function Design

Given that LLMs process data linearly, we first introduce a Text-
based reward to investigate whether focusing solely on sequential
patterns could enhance hardware code generation. Building upon
this, we incorporate structural features such as AST and DFG to
explore the impact of structure on the accuracy of generated hardware
designs. Therefore, our reward is constructed from three components:

1) Text: We evaluate the text similarity between generated and
reference codes, focusing on the similarity of word elements. By
analyzing the frequency and distribution of these elements in the
code (such as variable names, function names, and keywords), we
reveal the sequential relationships within the code. We develop a text
similarity algorithm employing tokenization, TF-IDF vectorization,
and cosine similarity to yield quantitative scores, shown in Fig 2(a).

SText = cossimilarity(matrixref,matrixgen) (1)

2) AST: The AST captures the hierarchical structure of the
hardware code, with each node in the tree representing a syntactic
element of the design, such as modules, control structures (e.g.,
IF, WHILE, ALWAYS), and operations (e.g., ADD, ASSIGN). To
quantify structural similarity, we use the Graph Edit Distance (GED).
Since GED computation is NP-hard and grows exponentially with the
number of vertices, we implement a subgraph decomposition strategy
to simplify complex ASTs. For instance, in Fig 2(b), the original AST
is decomposed into three subgraphs, each focusing on the MODULE
structure, WHILE loop, and ALWAYS block, respectively. We apply
the AStar algorithm combined with local search (LSa) to compare the
query graph (generated design ASTs) with the target graph (reference
design ASTs), calculating the GED and checking if it is less than
or equal to the specified threshold τ [36]. The final output is the
number of Match that meets the condition. The AST-similarity score
is defined as:

SAST or DFG =
Matchi −Matchmin

Matchmax −Matchmin
(2)

3) DFG: Each node in the DFG represents an operation, while
edges illustrate the data flow between these operations. To simplify
the analysis and improve computational efficiency, we decompose
the complex DFG into smaller subgraphs, where each subgraph
represents the data flow from a single input to its corresponding
output, as shown in Fig 2(c). The DFG-similarity score is defined
in Equation 2.

For each input instruction x, multiple distinct candidate outputs y
are sampled from the reference policy πref of the original model. The
generated code is scored by combining these factors comprehensively,
with weights used to adjust the proportion of each component, wT +
wA + wD = 1:

S(x,y) = wT · SText + wA · SAST + wD · SDFG (3)

The superior output yw (highest score) and the inferior output yl
(lowest score) are selected. The preference dataset is composed of
such triplets: D = {(x(i), y

(i)
w , y

(i)
l )}Ni=1, where each candidate’s

reward is calculated as follows:

r̂θ(x, y) = β log
πθ(y|x)
πref(y|x)

where πθ(y|x) denotes the probability of generating output y given
input x under the current policy, and πref(y|x) denotes the probability
under the reference policy. This log-ratio formulation enables an
assessment of the current policy’s relative advantage in generating
preferred outputs over the reference policy, with β serving as a scaling
factor to control reward intensity.

C. Evaluation Method

The evaluation method comprises two key aspects: Syntax and
Function. We use the pass@k [37] standard to assess Syntax and
Function accuracy of hardware code generation. The model generates
n (where n > k) code samples for each problem, and then k samples
are randomly selected from these. If at least one of the k samples
passes the unit test, the test is considered passed. Here, c represents
the total number of samples that pass the unit tests.

pass@k := EProblems

[
1−

(
n−c
k

)(
n
k

) ]
(4)

TABLE I: Reinforcement Learning Training Loss and Accuracy

Reward RL-only SFT-RL

Scoring
Mechanism

wT wA wD

Base Model: Deepseek-
coder-6.7b [38]

Base Model: RTLCoder [7],
finetuned on DeepSeek

Loss Accuracy Loss Accuracy
Text 1 0 0 0.4754 0.7875 0.5322 0.8125
AST 0 1 0 0.2304 0.8999 0.3458 0.8750
DFG 0 0 1 0.2628 0.9625 0.5376 0.8125

Text & AST 1/2 1/2 0 0.5226 0.8345 0.6392 0.7745
Text & DFG 1/2 0 1/2 0.5028 0.8500 0.6210 0.7185

Text & AST & DFG 1/3 1/3 1/3 0.5123 0.8250 0.6355 0.8245

IV. EXPERIMENTS

In this section, we evaluate the impact of RL models integrated
with structural factors on hardware code generation quality.

The typical LLM training process comprises three stages: Pre-
training, Supervised Fine-tuning, and Reinforcement Learning, which
progressively improve the model’s ability to specialize and generate
high-quality outputs for specific tasks. To assess the impact of
RL effectively, we implement and compare two distinct training
strategies: 1) RL-only, training based on Deepseek-coder-6.7b [38]
to explore the potential of RL in optimizing non-proprietary hardware
code generation models without additional supervision; 2) SFT-
RL, training based on RTLCoder-Deepseek-v1.1 [7], which is a
supervised fine-tuned version of Deepseek-coder-6.7b by utilizing
a specialized dataset to enhance the accuracy of hardware code
generation. We evaluate our RL models using the RTLLM [39]
benchmark and VerilogEval [8] benchmark, focusing on both syn-
tax and functionality. VerilogEval includes 156 problems from the
instructional Verilog website HDLBits, covering a range from simple
combinational circuits to complex FSMs, and is divided into two
subsets: VerilogEval-human, with handcrafted problem descriptions,
and VerilogEval-machine, with LLM-generated descriptions. RTLLM
comprises 29 designs encompassing various complexities and scales,
with each reference design written by human designers. The experi-
ments are conducted on a workstation with four A100 40GB GPUs.

A. Dataset Generation

Compared to SFT (tens of thousands to millions) and pre-training
(billions to trillions), RL usually only requires a few thousand ex-
amples. For our RL framework to enhance hardware code generation
quality through AST and DFG integration, we randomly sampled 3k
functional descriptions from the RTLCoder dataset [40] as Instruc-
tions, with the corresponding hardware code serving as the Reference



TABLE II: Evaluation results. Original refers to the DeepSeek-Coder-6.7b model. RL-only represents reinforcement learning applied directly
to the original model with different reward settings. SFT-only refers to RTLCoder-Deepseek-v1.1, which applies supervised fine-tuning on
the original model. SFT-RL indicates RL applied to the SFT-only model (RTLCoder) using different reward settings. Positive percentages
(blue) indicate stronger accuracy, while negative percentages (red) reflect weaker accuracy.

Benchmark VerilogEval RTLLM-v1.1

Category Human Machine Syntax Func

Metric pass@1 vs Original vs SFT-only pass@5 vs Original vs SFT-only pass@1 vs Original vs SFT-only pass@5 vs Original vs SFT-only pass@5 vs Original vs SFT-only pass@5 vs Original vs SFT-only

Original 30.2 0.00% -27.40% 42.2 0.00% -15.77% 54.1 0.00% -11.60% 63.8 0.00% -16.60% 89.6 0.00% -3.76% 34.5 0.00% -28.57%

RL-only

Text 30.6 1.32% -26.44% 42.8 1.42% -14.57% 54.7 1.11% -10.62% 62.2 -2.51% -18.69% 93.1 3.91% 0.00% 44.8 29.86% -7.25%

AST 29.6 -1.99% -28.85% 40.3 -4.50% -19.56% 54.2 0.18% -11.44% 62 -2.82% -18.95% 100 11.61% 7.41% 41.4 20.00% -14.29%

DFG 31.3 3.64% -24.76% 42.5 0.71% -15.17% 58.6 8.32% -4.25% 68.4 7.21% -10.59% 100 11.61% 7.41% 34.5 0.00% -28.57%

Text&AST 30.4 0.66% -26.92% 44.3 4.98% -11.58% 53.8 -0.55% -12.09% 63.1 -1.10% -17.52% 100 11.61% 7.41% 44.8 29.86% -7.25%

Text&DFG 32.9 8.94% -20.91% 45 6.64% -10.18% 54.9 1.48% -10.29% 64.4 0.94% -15.82% 93.1 3.91% 0.00% 37.9 9.86% -21.53%

Text&AST&DFG 35.8 18.54% -13.94% 46.2 9.48% -7.78% 58.1 7.39% -5.07% 65.7 2.98% -14.12% 96.6 7.81% 3.76% 48.3 40.00% 0.00%

SFT-only 41.6 37.75% 0.00% 50.1 18.72% 0.00% 61.2 13.12% 0.00% 76.5 19.91% 0.00% 93.1 3.91% 0.00% 48.3 40.00% 0.00%

Text 42.8 41.72% 2.88% 51.7 22.51% 3.19% 62.7 15.90% 2.45% 77.5 21.47% 1.31% 93.1 3.91% 0.00% 48.3 40.00% 0.00%

AST 41.6 37.75% 0.00% 50.8 20.38% 1.40% 61.5 13.68% 0.49% 78.7 23.35% 2.88% 96.6 7.81% 3.76% 48.3 40.00% 0.00%

DFG 42.2 39.74% 1.44% 54.9 30.09% 9.58% 62.3 15.16% 1.80% 79.6 24.76% 4.05% 96.6 7.81% 3.76% 48.3 40.00% 0.00%

Text&AST 42.6 41.06% 2.40% 54.2 28.44% 8.18% 62.9 16.27% 2.78% 79.2 24.14% 3.53% 96.6 7.81% 3.76% 51.7 49.86% 7.04%

Text&DFG 43.4 43.71% 4.33% 55.9 32.46% 11.58% 63.1 16.64% 3.10% 79.6 24.76% 4.05% 93.1 3.91% 0.00% 51.7 49.86% 7.04%

SFT-RL

Text&AST&DFG 45.2 49.67% 8.65% 56.4 33.65% 12.57% 63.8 17.93% 4.25% 80.7 26.49% 5.49% 93.1 3.91% 0.00% 55.2 60.00% 14.29%

designs. To construct datasets that reflect preference differences, we
utilized two baseline models (DeepSeek and RTLCoder) to generate
hardware designs ten times for each Instruction, resulting in a dataset
of 30k generated designs. Each generated design is evaluated using
Text, AST, and DFG scoring mechanisms. We then examined the
contribution of each reinforcement strategy to model performance by
designing different combinations of scoring mechanisms as rewards:
only Text, only AST, only DFG; combining text similarity with
structural and semantic assessments Text & AST and Text & DFG,
applying all scoring mechanisms simultaneously Text & AST &
DFG. These combinations serve as mutual ablations. We select two
hardware designs for each scheme with the highest and lowest scores,
collectively forming a preference dataset denoted as Instruction-
Chosen-Rejected.

B. Model Training

We employ Direct Preference Optimization (DPO) [41] to train our
hardware design generation models, directly optimizing the model’s
policy to align with RTL structures by leveraging preference data.
For fine-tuning, we use Low-Rank Adaptation (LoRA) [42], which
significantly reduces the number of trainable parameters, enabling
efficient adaptation of large models without the high computational
costs associated with full fine-tuning. To balance preference weight-
ing and incorporate feedback effectively, we set β = 0.1 and train
with a learning rate of 5 × 10−6, using a cosine scheduler with a
warmup phase of 0.1 steps. Table I presents the training loss and
reward accuracy for various hardware design generation models with
our RL framework.

TABLE III: The comparison of our reinforcement learning models
with GPT4 and base models. The evaluation metric is pass@5.

VerilogEval RTLLM-v1.1Evaluated Model
Hum.(%) Mach.(%) Syn.(%) Func(%)

GPT3.5 45.8 69.1 89.7 37.9
GPT4 55.8 70.6 100 65.0

DeepSeek-Coder 42.2 63.8 89.6 34.5
RL-only Text & AST & DFG 46.2 65.7 96.6 48.3

RTLcoder-DeepSeek 50.1 76.5 93.1 48.3
SFT-RL Text & AST & DFG 56.4 80.7 93.1 55.2

C. Evaluation

We evaluate the capabilities of the structure-based RL models in
generating RTL code from natural language descriptions using two

benchmarks: VerilogEval and RTLLM. Table II presents a perfor-
mance comparison between RL-only and SFT-RL models against
baseline models, shown in the columns labeled vs Original and
vs SFT-only. Both the RL-only vs Original and the SFT-RL vs
SFT-only comparisons demonstrate notable improvements. Specifi-
cally, the SFT-RL model integrated with Text&AST&DFG (referred
to as SFT-RL-TAD) achieves optimal performance. Compared to
the SFT-only model: On the VerilogEval-Human subset, SFT-RL-
TAD improves pass@1 by 8.65% and pass@5 by 12.57%. On
VerilogEval-Machine, it increases pass@1 by 4.25% and pass@5 by
5.49%. On RTLLM, the functional accuracy improves by 14.29%.
Compared to other state-of-the-art models, as shown in Table III: In
the RTLLM benchmark, both the RL-only and SFT-RL integrated
with Text&AST&DFG enhance the performance of the baseline
models, surpassing GPT-3.5. In VerilogEval, the SFT-RL-TAD model
further improves the performance of the RTLCoder model, exceeding
the results of GPT-4.

Ablation Study: To examine the impact of different reward criteria
components, we evaluate multiple model variants: Text, AST, DFG,
Text&AST, Text&DFG, Text&AST&DFG, as shown in Table II.
Models trained with combined components (Text&AST, Text&DFG,
Text&AST&DFG) outperform those relying on a single metric (Text,
AST, or DFG). Incorporating structural-level features, which LLMs
traditionally find challenging to capture, proves more effective than
using the Text-based method alone.

V. CONCLUSION

This work demonstrates that integrating RL with structural rep-
resentations, such as ASTs and DFGs, enhances the capability of
LLMs in hardware design generation. By addressing the limitations of
linear data processing in LLMs, our approach significantly improves
both syntax correctness and functional accuracy. The SFT-RL model
integrated with Text, AST, and DFG achieves notable improvements:
a 12.57% increase on VerilogEval-Human and a 5.49% increase on
VerilogEval-Machine, outperforming GPT-4; a 14.29% improvement
on RTLLM, approaching GPT-4’s performance. This breakthrough
enables LLMs to overcome the challenges posed by the structural
complexity of hardware descriptions, making them more practical
for real-world hardware design tasks.

ACKNOWLEDGMENT

Portions of this work were supported by the National Science
Foundation (2340949 and 2419880).



REFERENCES

[1] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-Chip Verification:
Methodology and Techniques. Springer Publishing Company, Incorpo-
rated, 2013.

[2] OpenAI, “Gpt-4 Technical Report,” ArXiv, Tech. Rep. abs/2303.08774,
2023.

[3] B. Ahmad, S. Thakur et al., “On hardware security bug code fixes by
prompting large language models,” IEEE Transactions on Information
Forensics and Security, vol. 19, p. 4043–4057, 2024.

[4] W. Fu, S. Li et al., “A generalize hardware debugging approach for
large language models semi-synthetic, datasets,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 72, no. 2, pp. 623–636,
2025.

[5] W. Fu, K. Yang et al., “Llm4sechw: Leveraging domain-specific large
language model for hardware debugging,” in 2023 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST), 2023, pp. 1–6.

[6] J. Blocklove, S. Garg et al., “Chip-chat: Challenges and opportunities
in conversational hardware design,” in 2023 ACM/IEEE 5th Workshop
on Machine Learning for CAD (MLCAD). IEEE, Sep. 2023.

[7] S. Liu, W. Fang et al., “Rtlcoder: Outperforming gpt-3.5 in design rtl
generation with our open-source dataset and lightweight solution,” 2024.

[8] M. Liu, N. Pinckney et al., “Verilogeval: Evaluating large language
models for verilog code generation,” 2023.

[9] Z. Pei, H.-L. Zhen et al., “Betterv: Controlled verilog generation with
discriminative guidance,” 2024.

[10] K. Chang, Y. Wang et al., “Chipgpt: How far are we from natural
language hardware design,” 2023.

[11] M. Nair, R. Sadhukhan, and D. Mukhopadhyay, “Generating secure
hardware using chatgpt resistant to cwes,” IACR Cryptol. ePrint Arch.,
vol. 2023, p. 212, 2023.

[12] S. Thakur, J. Blocklove et al., “Autochip: Automating hdl generation
using llm feedback,” 2024.

[13] R. Kande, H. Pearce et al., “Llm-assisted generation of hardware
assertions,” 2023.

[14] M. Orenes-Vera, M. Martonosi, and D. Wentzlaff, “Using llms to
facilitate formal verification of rtl,” 2023.

[15] J. Li, J. Chen et al., “The dawn after the dark: An empirical study
on factuality hallucination in large language models,” 2024. [Online].
Available: https://arxiv.org/abs/2401.03205

[16] L. Ouyang, J. Wu et al., “Training language models to follow
instructions with human feedback,” 2022. [Online]. Available: https:
//arxiv.org/abs/2203.02155

[17] Anthropic. (2023) Meet claude. [Online]. Available: https://www.
anthropic.com/claude

[18] G. Gemini Team, “Gemini: A family of highly capable multimodal
models,” 2024.

[19] H. Touvron, T. Lavril et al., “Llama: Open and efficient foundation
language models,” 2023.

[20] H. Dong, W. Xiong et al., “Raft: Reward ranked finetuning for
generative foundation model alignment,” 2023. [Online]. Available:
https://arxiv.org/abs/2304.06767

[21] R. Kibria, M. Sazadur Rahman et al., “Rtl-fsmx: Fast and accurate finite
state machine extraction at the rtl for security applications,” in 2022
IEEE International Test Conference (ITC), 2022, pp. 165–174.

[22] O. Arias, Z. Liu et al., “Rtsec: Automated rtl code augmentation for
hardware security enhancement,” in 2022 Design, Automation& Test in
Europe Conference& Exhibition (DATE), 2022, pp. 596–599.

[23] S. Semba and H. Saito, “Rtl conversion method from pipelined syn-
chronous rtl models into asynchronous ones,” IEEE Access, vol. 10, pp.
28 949–28 964, 2022.

[24] R. Anil, A. M. Dai et al., “Palm 2 technical report,” 2023. [Online].
Available: https://arxiv.org/abs/2305.10403

[25] B. Rozière, J. Gehring et al., “Code llama: Open foundation models for
code,” 2024.

[26] M. Liu, T.-D. Ene et al., “Chipnemo: Domain-adapted llms for chip
design,” 2024.

[27] A. Vaswani, N. Shazeer et al., “Attention is all you need,” 2023.
[Online]. Available: https://arxiv.org/abs/1706.03762

[28] X. Wang, H. Kim et al., “Human-llm collaborative annotation through
effective verification of llm labels,” in Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems, ser. CHI ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3613904.3641960

[29] K. Liu, Z. Chen et al., “Educating llms like human students: Structure-
aware injection of domain knowledge,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.16724

[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[31] A. Hosny, S. Hashemi et al., “Drills: Deep reinforcement learning for
logic synthesis,” 2019. [Online]. Available: https://arxiv.org/abs/1911.
04021

[32] N. Wu, Y. Xie, and C. Hao, “Ironman-pro: Multiobjective design space
exploration in hls via reinforcement learning and graph neural network-
based modeling,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 42, no. 3, pp. 900–913, 2023.

[33] A. R. Baranwal, S. Ullah et al., “Relaccs: A multilevel approach to
accelerator design for reinforcement learning on fpga-based systems,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 40, no. 9, pp. 1754–1767, 2021.

[34] K. Settaluri, Z. Liu et al., “Automated design of analog circuits using
reinforcement learning,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 41, no. 9, pp. 2794–2807, 2022.

[35] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[36] L. Chang, X. Feng et al., “Speeding up ged verification for graph

similarity search,” in 2020 IEEE 36th International Conference on Data
Engineering (ICDE), 2020, pp. 793–804.

[37] M. Chen, J. Tworek et al., “Evaluating large language models trained
on code,” 2021.

[38] D. Guo, Q. Zhu et al., “Deepseek-coder: When the large language model
meets programming – the rise of code intelligence,” 2024.

[39] Y. Lu, S. Liu et al., “Rtllm: An open-source benchmark for design rtl
generation with large language model,” 2023.

[40] “Rtlcoder dataset.” [Online]. Available: https://github.com/hkust-zhiyao/
RTL-Coder

[41] R. Rafailov, A. Sharma et al., “Direct preference optimization: Your
language model is secretly a reward model,” in Advances in Neural
Information Processing Systems, A. Oh, T. Naumann et al., Eds., vol. 36.
Curran Associates, Inc., 2023, pp. 53 728–53 741.

[42] E. J. Hu, Y. Shen et al., “LoRA: Low-rank adaptation of large language
models,” in International Conference on Learning Representations,
2022.

https://arxiv.org/abs/2401.03205
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3613904.3641960
https://arxiv.org/abs/2407.16724
https://arxiv.org/abs/1911.04021
https://arxiv.org/abs/1911.04021
https://yosyshq.net/yosys/
https://github.com/hkust-zhiyao/RTL-Coder
https://github.com/hkust-zhiyao/RTL-Coder

	Introduction
	Background and Related Work
	LLM-based hardware design Generation
	Conflict Between Linear Data Processing and RTL Structure
	Addressing Structural Design with Graph Level Representation
	Reinforcement Learning

	Methodology
	AST and DFG Generation
	Reward Function Design
	Text
	AST
	DFG

	Evaluation Method

	Experiments
	Dataset Generation
	Model Training
	Evaluation

	Conclusion
	References

