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Abstract
To enhance the performance of large language models (LLMs) on
hardware design tasks, we focus on training with reinforcement
learning(RL) to improve LLMs’ syntax synthesis and functional
verification performance. We observed significant gains in power,
performance, and area (PPA) metrics by applying RL. Specifically,
DeepSeek Code saw a 23.6% performance increase, while the RTL-
Coder improved by 7.86%. Our findings demonstrate the effective-
ness of RL in refining LLMs for more accurate hardware generation,
considering power and area consumption. This approach offers
a promising direction for generating hardware resilient to side-
channel attacks in computer systems.

CCS Concepts
• Hardware → Emerging tools and methodologies; Software
tools for EDA.
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1 Introduction
The hardware design abilities of large language models (LLMs) are
rapidly improving as measured by design RTL generation bench-
marks VerilogEval [6] and RTLLM [8]. Simultaneously, the direction
of designing domain-specific LLMs in the hardware field has mainly
divided into two approaches: pairing general LLMs with domain-
specific prompts, such as in Chip-Chat [2], and fine-tuning LLMs
using domain-specific datasets, as RTLCoder [7] and VeriGen [13].
These efforts have introduced LLMs into the hardware domain.
However, their ultimate goal only involves achieving circuit syn-
thesis. Current results show that LLMs perform reasonably well
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in syntax synthesis but struggle with functional verification. For
instance, GPT-4 [9] achieves perfect accuracy in syntax synthe-
sis (RTLLM), but in the VerilogEval Benchmark’s Eval-Human, its
𝑝𝑎𝑠𝑠@1, 5, and 10 scores are only 43.5, 55.8, and 59.9 (out of 100),
respectively, even though it performs best among all LLMs. The
best-performing open-source model, RTLCoder-DeepSeek, only
achieves 41.5, 50.1, and 53.4. These results indicate an ordinary ceil-
ing for both approaches: the limitation of transmitting hardware
domain knowledge purely through semantic understanding.

The contradiction stems from the hardware design source code
being structural while LLMs operate linearly. Textual similarity can-
not guarantee critical factors, such as parenthesis closure, which are
crucial for compilation. These elements are often treated as isolated
semantic tokens, making it difficult for training. Additionally, many
lower-level hardware characteristics cannot be adequately captured
through content or “semantic” representation. For example, Power,
Performance, and Area (PPA) metrics are often influenced by secu-
rity measures in hardware, which can intentionally degrade PPA to
prevent failures under extreme conditions. Moreover, generating
hardware designs with specific security features, such as mitigating
power and electromagnetic (EM) side-channel threats, cannot be
achieved by simply encouraging the generation of specific con-
tent. Instead, it requires penalizing the generation of undesirable
patterns or situations.

Previous reinforcement learning (RL)works, such as AlphaGo [12]
and OpenAI Dota 2 [1], have demonstrated that RL techniques can
train neural networks for complex planning in game environments.
Notably, CoderRL [4] enables software code generation optimiza-
tion based on compiler feedback. Given these prior successes and
the inherently interactive nature of problem-solving, applying RL
to LLM hardware generation seems a natural next step. In this
proposal, we explore leveraging RL concepts to enhance LLMs’
capabilities in hardware design across various reward schemes.
Contributions. In summary, the contributions of this proposal
are as follows: 1. Demonstrate that RL can enhance the synthesis
pass rate of LLMs’ generated hardware designs. 2. Proof RL can
train LLMs with hardware synthesis metrics and specifications,
ensuring the generated designs possess specific characteristics. 3.
This work advances the development of LLMs in the hardware
domain, assisting practitioners in creating hardware designs that
meet specific specifications or rules. 4. Propose the first cross-layer
hardware LLM framework to define PPA metrics at the RT-level
and use them to enhance resilience against side-channel attacks.
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2 Background
2.1 From Markov Decision Process to

Reinforcement Learning
Consider a Markov Decision Process consisting of states ∈ S, action
∈ A, rewards 𝑟 ∈ R, a discount factor𝛾 , and a transition probability
function 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ), where 𝑡 is an integer denoting the timestep
and (S,A) are the state and action spaces. In environments de-
scribed by a Markov Decision Process, at each timestep 𝑡 , the agent
observes the state 𝑠𝑡 , selects an action 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ) from its pol-
icy, and then observes the next state 𝑠𝑡+1 ∼ 𝑝 (·|𝑠𝑡 , 𝑎𝑡 ) sampled
from the environment’s transition dynamics. RL algorithms aim
to maximize the return, defined as the cumulative sum of rewards∑
𝑡 𝛾

𝑡𝑟𝑡 , throughout the training episode. Most RL algorithms max-
imize returns through trial and error by directly interacting with
the environment. However, offline RL [5] has recently emerged as
an alternative paradigm, where an agent aims to extract return-
maximizing policies from offline data gathered by another agent.
The offline dataset consists of (𝑠, 𝑎, 𝑟 ) tuples.

2.2 Transfomer, LLM, and RL from Human
Feedback

Transformers [14] is the basis of LLM, which are typically pre-
trained with predicting the next token [10]. However, training
LLMswith RL presents significant challenges, as many tasks involve
complex, poorly defined, or hard-to-specify goals, leading us to
one offline RL: Reinforcement Learning from Human Feedback
(RLHF). RLHF [3] typically involves training a reward model 𝑟
to capture human preferences over a task 𝜏 . The reward model
is then used to score LLM responses to prompts from the task,
followed by policy improvement, often using Direct Preference
Optimization(DPO) [11].

3 Methodology and Experiment
Our preliminary experiments employed RLHF and DPO by con-
structing a dataset comprising hardware implementations and per-
formance scores. The choice of RLHF was driven by the need to
validate the conceptual framework under constrained cost con-
ditions. Our ongoing work involves transitioning to RL without
Human Feedback, which enables the creation of more complex
scenarios, such as CWE and power side-channel.

3.1 PPA Assistant Dataset Construction
The dataset construction process began with aggregating open-
source datasets from RTLCoder and VeriGen. These datasets include
multiple implementations of the same hardware functionality with
identical input/output. We categorized these hardware designs and
selected 1000 designs with diverse IO and functionalities.

We evaluated the PPA metrics for each category to identify the
optimal hardware implementation as the ideal scenario. Other im-
plementations within the same category served as comparison
subjects. The PPA metrics were estimated using Xilinx ISE Vivado
v2019.1 (64-bit), targeting the AMD Kintex7 FPGA KC705 Evalua-
tion Kit for synthesis. Specifically, Performance was measured by
the total timing check issues reported in the Check Time report;
Power consumption was assessed using the Total On-Chip Power

(W); Area utilization was determined based on the resource usage
reported in the Utilization report (including LUTs, FFs, IOs).

A new PPA metric will also be developed to determine the best
hardware implementations for defending against power and EM
side-channel attacks.Wewill collect EM and power traces simulated
using EMsim+ and Synopsys PrimeTime PTPX. A Python script will
then be developed to perform correlation analysis on these traces.
Finally, the number of traces needed to infer sensitive information
successfully will be recorded and used to design this new metric.

3.2 Code Similarity Calculation: Integrating
Abstract Syntax Tree and Data Flow Graph

We identified the lack of structural comprehension as a primary
cause of synthesis failures. To enhance the LLM’s understanding of
structure, we developed a reward function comprising text similar-
ity, Abstract Syntax Tree (AST) similarity, Data Flow Graph (DFG)
similarity, and PPA metrics. Text similarity was computed using
cosine similarity. AST and DFG similarities were estimated using
graph similarity. The reward was calculated as the average of the
similarities.

3.3 LLM Training
We utilized the open-source code LLMs Codellama and DeepSeek
and the hardware fine-tuned variant RTLCoder. In Fig. 1, we com-
pare the performance of the reinforcement learning fine-tuned
models against their original versions on the RTLLM benchmark.
Additionally, we included performance metrics of three closed-
source LLMs from OpenAI for workload reference.

It is important to note that a direct performance comparison
between open-source and closed-source models is not meaningful,
as all the selected open-source models have a parameter size of 7B,
significantly smaller than ChatGPT. Larger models inherently pos-
sess advantages in semantic understanding and complex generation
tasks. Therefore, we use these comparisons to illustrate differences
in workload duration and total effort.

Given that our reinforcement learning approach primarily aimed
to enhance the models’ understanding of hardware design struc-
tures and syntax, we focused on these aspects in our evaluation. Be-
fore training, Codellama’s performance was comparable to the GPT-
3.5 Turbo(Nov 6, 2023). After training, Codellama surpassed the
GPT-4(Jan 15, 2024) in handling hardware-specific tasks. DeepSeek
Coder initially performed close to GPT-4, and after RL, its perfor-
mance matched the GPT-4o(May 13, 2024), achieving 100% accuracy.

For the RTLCoder, the syntax correctness rate remained un-
changed before and after training. However, despite not explicitly
targeting semantic understanding in our design, reinforcement
learning improved functional accuracy (7% increase).

3.4 PPA Comparison
Table 1 compares the hardware generation performance of DeepSeek
Code and RTLCoder on the RTLLM benchmark before and after
reinforcement training. The results demonstrate that reinforcement
learning consistently improves Performance metrics while induc-
ing noticeable changes in Power and Area metrics. Specifically,
for DeepSeek Code, reinforcement learning resulted in an average
Performance increase of 23.6%, a Power improvement of 12.02%,
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Figure 1: Performance of Original LLMs and the RF finetuned version on RTLLM Benchmark

Table 1: Comparison of PPA for Hardware Designs Generated by LLMs on the RTLLM Benchmark Before and After RL

Deepseek-Coder-6.7B RTLCoder-DeepSeek
Perf Power Area Perf Power AreaDesign

Orignal RL Ver. Improve Orignal RL Ver. Improve Original RL Ver. Improve Orignal RL Ver. Improve Orignal RL Ver. Improve Original RL Ver. Improve
Design 1-6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
RAM 309 231 25.24% 2.063 2.063 0.00% 4.42 4.38 0.90% 1581 212 86.59% 3.762 3.762 0.00% 5.76 5.75 0.17%
width_8to16 126 94 25.40% 1.558 1.866 -19.77% 5.61 5.6 0.18% 130 126 3.08% 1.161 2.24 -92.94% 5.61 5.6 0.18%
adder_8bit 9 9 0.00% 5.753 5.751 0.03% 5.22 5.2 0.38% 9 9 0.00% 5.753 5.752 0.02% 5.22 5.2 0.38%
adder_16bit 17 17 0.00% 11.269 11.139 1.15% 10.01 10 0.10% 17 16 5.88% 12.324 10.174 17.45% 10.01 10.01 0.00%
radix2_div N/A 122 100.00% N/A 0.652 N/A N/A 7.42 N/A 167 94 43.71% 0.187 0.433 -131.55% 3.4 4.1 -20.59%
trafic_light 61 33 45.90% 3.003 4.535 -51.02% 2.81 2.6 7.47% 33 33 0.00% 4.2 4.196 0.10% 2.81 2.6 7.47%
freq_div 21 21 0.00% 2.358 2.358 0.00% 1 1 0.00% 38 38 0.00% 2.82 2.82 0.00% 1 1 0.00%
accu 198 129 34.85% 2.579 3.745 -45.21% 4.42 4.42 0.00% 121 159 -31.40% 1.264 3.691 -192.01% 4.41 4.42 -0.23%
fsm 15.5 15 3.23% 0.541 0.247 54.34% 0.8 0.8 0.00% 15 16 -6.67% 0.308 0.265 13.96% 0.8 0.8 0.00%
JC_Counter 443 443 0.00% 129.119 129.119 0.00% 13.22 13.22 0.00% 443 443 0.00% 129.119 129.119 0.00% 13.22 13.22 0.00%
multi16bit 336 336 0.00% 9.76 4.605 52.82% 10.16 8.63 15.06% 347 337 2.88% 5.669 1.002 82.32% 13.66 13.66 0.00%
multibooth8bit 301 257 14.62% 0.563 0.577 -2.49% 7.05 7.04 0.14% 400 400 0.00% 2.974 2.974 0.00% 7.05 7.05 0.00%
multipipe4bit 157 113 28.03% 3.932 8.321 -111.62% 3.62 3.62 0.00% 89 67 24.72% 5.046 1.691 66.49% 3.61 2.41 33.24%
multipipe8bit 458 167 63.54% 12.729 16.533 -29.88% 7.25 7.24 0.14% 577 N/A #VALUE! 12.133 N/A N/A 7.25 N/A N/A
parallel2serial 43 43 0.00% 4.293 4.293 0.00% 2.2 2.2 0.00% 31 28 9.68% 2.255 2.249 0.27% 1.6 1.6 0.00%
pulse_detect 14 12 14.29% 0.713 0.416 41.65% 0.8 0.8 0.00% 14 15 -7.14% 0.258 0.296 -14.73% 0.8 0.8 0.00%
serial2parallel 88 88 0.00% 2.264 2.499 -10.38% 2.6 2.6 0.00% 88 64 27.27% 2.499 0.569 77.23% 2.6 2.6 0.00%
signal_generator 29 24 17.24% 3.942 4.065 -3.12% 1.41 1.4 0.71% 24 24 0.00% 4.069 4.069 0.00% 1.4 1.4 0.00%
alu 370 356 3.78% 16.397 12.173 25.76% 21.68 21.6 0.37% 370 363 1.89% 12.529 12.441 0.70% 21.61 21.56 0.23%
div_16bit 134 16 88.06% 14.293 4.167 70.85% 11.36 9.6 15.49% N/A 32 N/A N/A 33.139 N/A N/A 11.35 N/A
adder32bit N/A 16 N/A N/A 10.689 N/A N/A 13.01 N/A 32 11 65.63% 18.425 4.788 74.01% 18.62 18.61 0.05%
adderpipe 731 583 20.25% 53.239 52.206 1.94% 39.47 39.43 0.10% 729 781 -7.13% 56.17 54.517 2.94% 39.47 39.47 0.00%
asynfifo N/A 485 N/A N/A 9.223 N/A N/A 16.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

and an Area enhancement of 11.79%. Similarly, for the RTLCoder,
we observed an average Performance increase of 7.86%, a Power
increase of 5.27%, and a slight Area improvement of 0.88%.
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